A~universal principle of self-correction
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 145-169

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a new theory of self-correction in circuits, one which differs from earlier methods by being completely based upon properties of Boolean functions, thus guaranteeing the universality of the methods which have already been developed. The principal result is the construction of a self-correcting, information-nonredundant Boolean function expansion, which admits an analogue in any nontrivial control system and permits the construction of asymptotically nonredundant self-correcting circuits. The Boolean functions include a broad spectrum of special classes. Bibliography: 19 titles.
@article{SM_1986_55_1_a9,
     author = {A. E. Andreev},
     title = {A~universal principle of self-correction},
     journal = {Sbornik. Mathematics},
     pages = {145--169},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a9/}
}
TY  - JOUR
AU  - A. E. Andreev
TI  - A~universal principle of self-correction
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 145
EP  - 169
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_1_a9/
LA  - en
ID  - SM_1986_55_1_a9
ER  - 
%0 Journal Article
%A A. E. Andreev
%T A~universal principle of self-correction
%J Sbornik. Mathematics
%D 1986
%P 145-169
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_55_1_a9/
%G en
%F SM_1986_55_1_a9
A. E. Andreev. A~universal principle of self-correction. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 145-169. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a9/