On hyperbolic embedding of complements of divisors and the limiting behavior of the Kobayashi--Rroyden metric
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 55-70
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the following three cases criteria are found for complements of divisors in compact complex manifolds to be hyperbolically embedded in the sense of Kobayashi: for divisors with normal crossings, for arbitrary divisors in complex surfaces, and for unions of hyperplanes in projective space. A criterion is given for two-dimensional polynomial polyhedra to be hyperbolically embedded, and Iitaka's conjecture about conditions for hyperbolicity of the complement of a set of projective lines is confirmed. Upper semicontinuity is proved for the Kobayashi–Royden pseudometrics and Kobayashi–Eisenman pseudovolumes of a family of complex manifolds containing degenerate fibers, and conditions are given under which the hyperbolic length (volume) on the smooth part of a degenerate fiber is the limit of the hyperbolic length (volume) on the nonsingular fibers.
Bibliography: 28 titles.
			
            
            
            
          
        
      @article{SM_1986_55_1_a3,
     author = {M. G. Zaidenberg},
     title = {On hyperbolic embedding of complements of divisors and the limiting behavior of the {Kobayashi--Rroyden} metric},
     journal = {Sbornik. Mathematics},
     pages = {55--70},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a3/}
}
                      
                      
                    TY - JOUR AU - M. G. Zaidenberg TI - On hyperbolic embedding of complements of divisors and the limiting behavior of the Kobayashi--Rroyden metric JO - Sbornik. Mathematics PY - 1986 SP - 55 EP - 70 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1986_55_1_a3/ LA - en ID - SM_1986_55_1_a3 ER -
M. G. Zaidenberg. On hyperbolic embedding of complements of divisors and the limiting behavior of the Kobayashi--Rroyden metric. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 55-70. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a3/
