Free subgroups and compact elements of connected Lie groups
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 273-283

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega_G$ be the set of compact (i.e., contained in some compact subgroup) elements of a topological group $G$, and let $\overline{\Omega}_G$ be its closure. The following assertions are proved: Theorem 1. A compact connected semisimple Lie group $G$ has a free dense subgroup each of whose nonidentity elements is a generator of a maximal torus in $G$. Theorem 2. {\it Suppose that a connected Lie group $G$ has no nontrivial compact elements in its center and coincides with the closure of its commutator group, and let $\mathscr{G}$ be its Lie algebra. The following conditions are equivalent: {(i)} $\overline{\Omega}_G = G$. {(ii)} $G$ has a dense subgroup of compact elements. {(iii)} $\mathscr{G} = \mathscr{S} \oplus\mathscr{V}$, where $\mathscr{V}$ is a nilpotent ideal and $\mathscr{S}$ is a semisimple compact algebra whose adjoint action on $\mathscr{V}$ does not have a zero weight. {(iv)} $G=SV$, where $V$ is a nilpotent connected simply connected normal subgroup and $S$ is a semisimple compact connected subgroup whose center $Z(S)$ acts (by conjugations) regularly on $V$.} Corollary. {\it A locally compact connected group $G$ that coincides with the closure of its commutator group has a dense subgroup of compact elements if and only if $\overline{\Omega}_G = G$.} Bibliography: 16 titles.
@article{SM_1986_55_1_a16,
     author = {M. I. Kabenyuk},
     title = {Free subgroups and compact elements of connected {Lie} groups},
     journal = {Sbornik. Mathematics},
     pages = {273--283},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a16/}
}
TY  - JOUR
AU  - M. I. Kabenyuk
TI  - Free subgroups and compact elements of connected Lie groups
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 273
EP  - 283
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_1_a16/
LA  - en
ID  - SM_1986_55_1_a16
ER  - 
%0 Journal Article
%A M. I. Kabenyuk
%T Free subgroups and compact elements of connected Lie groups
%J Sbornik. Mathematics
%D 1986
%P 273-283
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_55_1_a16/
%G en
%F SM_1986_55_1_a16
M. I. Kabenyuk. Free subgroups and compact elements of connected Lie groups. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 273-283. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a16/