On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 259-271

Voir la notice de l'article provenant de la source Math-Net.Ru

A smooth $(2n-1)$-dimensional manifold $X_{2n-1}$ equipped with the structure of a tangent pseudovector bundle over a certain smooth $n$-dimensional base manifold $X_n$ is studied in this paper from a local point of view. Under the assumption that a special affine connection $\Lambda(x,y)$ is given in $X_{2n-1}$, a general path space $X_{n,y}$ is obtained. The method used here is based on the isotropy groups of the first and second kind and the choice of special systems of coordinates. Bibliography: 10 titles.
@article{SM_1986_55_1_a15,
     author = {A. I. Egorov},
     title = {On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces},
     journal = {Sbornik. Mathematics},
     pages = {259--271},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a15/}
}
TY  - JOUR
AU  - A. I. Egorov
TI  - On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 259
EP  - 271
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_1_a15/
LA  - en
ID  - SM_1986_55_1_a15
ER  - 
%0 Journal Article
%A A. I. Egorov
%T On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces
%J Sbornik. Mathematics
%D 1986
%P 259-271
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_55_1_a15/
%G en
%F SM_1986_55_1_a15
A. I. Egorov. On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 259-271. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a15/