On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 259-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A smooth $(2n-1)$-dimensional manifold $X_{2n-1}$ equipped with the structure of a tangent pseudovector bundle over a certain smooth $n$-dimensional base manifold $X_n$ is studied in this paper from a local point of view. Under the assumption that a special affine connection $\Lambda(x,y)$ is given in $X_{2n-1}$, a general path space $X_{n,y}$ is obtained. The method used here is based on the isotropy groups of the first and second kind and the choice of special systems of coordinates. Bibliography: 10 titles.
@article{SM_1986_55_1_a15,
     author = {A. I. Egorov},
     title = {On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces},
     journal = {Sbornik. Mathematics},
     pages = {259--271},
     year = {1986},
     volume = {55},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a15/}
}
TY  - JOUR
AU  - A. I. Egorov
TI  - On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 259
EP  - 271
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_1_a15/
LA  - en
ID  - SM_1986_55_1_a15
ER  - 
%0 Journal Article
%A A. I. Egorov
%T On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces
%J Sbornik. Mathematics
%D 1986
%P 259-271
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1986_55_1_a15/
%G en
%F SM_1986_55_1_a15
A. I. Egorov. On the problem of the distribution of gaps in the orders of the full groups of motions of general path spaces. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 259-271. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a15/

[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 1, 2, Nauka, M., 1981

[2] Egorov I. P., “Dvizheniya v prostranstvakh affinnoi svyaznosti”, Uchenye zapiski Penzenskogo gosud. ped. instituta, 1965, 5–179

[3] Egorov I. P., Gruppy dvizhenii prostranstv affinnoi svyaznosti, Avtoref. dis. na soiskanie uch. st. kand. fiz.-matem. nauk, Izd-vo Kazan. un-ta, Kazan, 1945

[4] Egorov A. I., “Prostranstva lineinykh elementov affinnoi svyaznosti, dopuskayuschie gruppy dvizhenii maksimalnogo poryadka”, Issledovaniya po geometrii i algebre, Izd-vo Kirgizsk. un-ta, Frunze, 1978, 24–42

[5] Laptev B. L., “Proizvodnaya Li v obobschennykh prostranstvakh”, Tr. seminara po vekt. i tenz. analizu, 7, 1949, 10

[6] Laptev B. L., “Proizvodnaya Li v prostranstvakh opornykh elementov”, Tr. seminara po vekt. i tenz. analizu, 10, 1956, 227–248 | MR | Zbl

[7] Egorov A. I., “O dvizheniyakh v prostranstvakh obschei affinnoi svyaznosti”, DAN SSSR, 1971, no. 6, 1266–1269 | Zbl

[8] Egorov A. I., “Prostranstva lineinykh elementov usechennoi affinnoi svyaznosti s gruppoi dvizhenii maksimalnogo poryadka”, Matem. zametki, 28:5 (1980), 749–768 | MR | Zbl

[9] Egorov A. I., “Lakunarnye finslerovy prostranstva”, Matem. sb., 116(158) (1981), 310–314 | MR | Zbl

[10] Egorov A. I., “Proektivnye dvizheniya v obschikh prostranstvakh putei”, Tr. seminara kafedry geometrii, Izd-vo Kazan. un-ta, Kazan, 1982, 23–34