$TI$-subgroups in groups of characteristic 2~type
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 237-242

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of cyclic $TI$-subgroups of order 4 in finite groups are studied. A consequence of the results is the Corollary. {\it Suppose that the $2$-group $A$ is a $TI$-subgroup of a finite group $G$, and that $F^*(G)$ is a simple group of characteristic $2$ type. Then either $A$ is elementary, or $F^*(G)\simeq G_2(3),$ $L_2(2^n\pm1),$ $L_3(3),$ $U_3(3),$ $U_4(3),$ $L_4(2),$ $U_4(2),$ $Sz(2^n),$ $U_3(2^n),$ $L_3(4),$ or $M_{11}$.} Bibliography: 13 titles.
@article{SM_1986_55_1_a13,
     author = {A. A. Makhnev},
     title = {$TI$-subgroups in groups of characteristic 2~type},
     journal = {Sbornik. Mathematics},
     pages = {237--242},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a13/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - $TI$-subgroups in groups of characteristic 2~type
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 237
EP  - 242
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_1_a13/
LA  - en
ID  - SM_1986_55_1_a13
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T $TI$-subgroups in groups of characteristic 2~type
%J Sbornik. Mathematics
%D 1986
%P 237-242
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_55_1_a13/
%G en
%F SM_1986_55_1_a13
A. A. Makhnev. $TI$-subgroups in groups of characteristic 2~type. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 237-242. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a13/