$TI$-subgroups in groups of characteristic 2~type
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 237-242
Voir la notice de l'article provenant de la source Math-Net.Ru
Properties of cyclic $TI$-subgroups of order 4 in finite groups are studied. A consequence of the results is the
Corollary. {\it Suppose that the $2$-group $A$ is a $TI$-subgroup of a finite group $G$, and that $F^*(G)$ is a simple group of characteristic $2$ type. Then either $A$ is elementary, or $F^*(G)\simeq G_2(3),$ $L_2(2^n\pm1),$ $L_3(3),$ $U_3(3),$ $U_4(3),$ $L_4(2),$ $U_4(2),$ $Sz(2^n),$ $U_3(2^n),$ $L_3(4),$ or $M_{11}$.}
Bibliography: 13 titles.
@article{SM_1986_55_1_a13,
author = {A. A. Makhnev},
title = {$TI$-subgroups in groups of characteristic 2~type},
journal = {Sbornik. Mathematics},
pages = {237--242},
publisher = {mathdoc},
volume = {55},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a13/}
}
A. A. Makhnev. $TI$-subgroups in groups of characteristic 2~type. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 237-242. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a13/