$TI$-subgroups in groups of characteristic 2 type
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 237-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of cyclic $TI$-subgroups of order 4 in finite groups are studied. A consequence of the results is the Corollary. {\it Suppose that the $2$-group $A$ is a $TI$-subgroup of a finite group $G$, and that $F^*(G)$ is a simple group of characteristic $2$ type. Then either $A$ is elementary, or $F^*(G)\simeq G_2(3),$ $L_2(2^n\pm1),$ $L_3(3),$ $U_3(3),$ $U_4(3),$ $L_4(2),$ $U_4(2),$ $Sz(2^n),$ $U_3(2^n),$ $L_3(4),$ or $M_{11}$.} Bibliography: 13 titles.
@article{SM_1986_55_1_a13,
     author = {A. A. Makhnev},
     title = {$TI$-subgroups in groups of characteristic 2~type},
     journal = {Sbornik. Mathematics},
     pages = {237--242},
     year = {1986},
     volume = {55},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a13/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - $TI$-subgroups in groups of characteristic 2 type
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 237
EP  - 242
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_1_a13/
LA  - en
ID  - SM_1986_55_1_a13
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T $TI$-subgroups in groups of characteristic 2 type
%J Sbornik. Mathematics
%D 1986
%P 237-242
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1986_55_1_a13/
%G en
%F SM_1986_55_1_a13
A. A. Makhnev. $TI$-subgroups in groups of characteristic 2 type. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 237-242. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a13/

[1] Makhnev A. A., “O plotno vlozhennykh podgruppakh konechnykh grupp”, Matem. sb., 121(163) (1983), 523–532 | MR

[2] Aschbacher M., “Finite groups generated by odd transpositions”, Math. Z., 127:1 (1972), 45–56 ; J. Algebra, 26:3 (1973), 451–491 | DOI | MR | Zbl | DOI | MR

[3] Aschbacher M., “Tightly embedded subgroups of finite groups”, J. Algebra, 42:1 (1976), 85–101 | DOI | MR | Zbl

[4] Aschbacher M., “Finite groups in which the generalized Fitting group of the centralizer of some involution is symplectic but not extraspecial”, Comm. Algebra, 4:7 (1976), 595–616 | DOI | MR | Zbl

[5] Aschbacher M., Seitz G. M., “Involutions in Chevalley groups over fields of even order”, Nag. Math. J., 63 (1976), 1–91 | MR | Zbl

[6] Aschbacher M., “A characterization of Chevalley groups over fields of odd order”, Ann. Math., 106:2–3 (1977), 353–468 | DOI | MR | Zbl

[7] Smith S. D., “A characterization of some Chevalley groups in characteristic two”, J. Algebra, 68:2 (1981), 390–425 | DOI | MR | Zbl

[8] Solomon R., Wong S. K., “On $L_2(2^n)$-blocks”, Proc. London Math. Soc., 43:3 (1981), 499–519 | DOI | MR | Zbl

[9] Stroth G., “Endliche gruppen, die eine maximale 2-lokale Untergruppen besitzen, so dass $Z\bigl(F^*(M)\bigr)$ eine $TI$-Menge in $G$ ist”, J. Algebra, 64:2 (1980), 460–528 | DOI | MR | Zbl

[10] Timmesfeld F., “Groups with weakly closed $TI$-subgroups”, Math. Z., 143:2 (1975), 243–278 | DOI | MR | Zbl

[11] Timmesfeld F., “On the structure of 2-local subgroups in finite groups”, Math. Z., 161:1 (1978), 119–136 | DOI | MR | Zbl

[12] Timmesfeld F., “On finite groups in which a maximal abelian normal subgroup of some maximal 2-local subgroup is a $TI$-set”, Proc. London Math. Soc., 43:1 (1981), 1–45 | DOI | MR | Zbl

[13] Timmesfeld F., “Groups of $GF(2)$-type and related problems”, Finite Simple Groups II, ed. M. Collins, Academic Press, 1980, 151–180