On imbedding theorems for anisotropic classes of functions
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 195-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Imbedding theorems are established for classes of functions whose derivatives belong to various symmetric spaces. The functions studied can fail to vanish on the boundary of the domain. A class of domains is singled out for which the imbedding theorems have the same form as for function spaces satisfying a zero boundary condition. Bibliography: 20 titles.
@article{SM_1986_55_1_a11,
     author = {V. S. Klimov},
     title = {On imbedding theorems for anisotropic classes of functions},
     journal = {Sbornik. Mathematics},
     pages = {195--205},
     year = {1986},
     volume = {55},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a11/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - On imbedding theorems for anisotropic classes of functions
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 195
EP  - 205
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_1_a11/
LA  - en
ID  - SM_1986_55_1_a11
ER  - 
%0 Journal Article
%A V. S. Klimov
%T On imbedding theorems for anisotropic classes of functions
%J Sbornik. Mathematics
%D 1986
%P 195-205
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1986_55_1_a11/
%G en
%F SM_1986_55_1_a11
V. S. Klimov. On imbedding theorems for anisotropic classes of functions. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 195-205. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a11/

[1] Klimov V. S., “Teoremy vlozheniya i geometricheskie neravenstva”, Izv. AN SSSR, Ser. matem., 40:3 (1976), 645–671 | MR | Zbl

[2] Kruzhkov S. N., Kolodii I. M., “K teorii vlozheniya anizotropnykh prostranstv Soboleva”, UMN, 38:2 (1983), 207–208 | MR | Zbl

[3] De Dzhordzhi E., “O differentsiruemosti i analitichnosti ekstremalei kratnykh regulyarnykh integralov”, Matematika (sb. perevodov), 4:6 (1960), 23–38

[4] Galyardo E., “Svoistva nekotorykh klassov funktsii mnogikh peremennykh”, Matematika (sb. perevodov), 5:4 (1961), 87–116

[5] Mazya V. G., “Klassy mnozhestv i mer, svyazannye s teoremami vlozheniya”, Teoremy vlozheniya i ikh prilozheniya (Tr. simpoziuma po teoremam vlozheniya. Baku. 1966), Nauka, M., 1970, 142–159 | MR

[6] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, L., 1950

[7] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[8] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[9] Fleming W. H., Rishel W., “An integral formula for total gradient variation”, Arch. Math., 11:3 (1960), 218–222 | DOI | MR | Zbl

[10] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | MR | Zbl

[11] Khardi G., Littlvud D., Polia G., Neravenstva, IL, M., 1948

[12] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[13] Klimov V. S., “Teoremy vlozheniya dlya prostranstv Orlicha, i ikh prilozheniya k kraevym zadacham”, Sib. matem. zhurn., 13:2 (1972), 334–348 | MR | Zbl

[14] Kalderon A. P., “Promezhutochnye prostranstva i interpolyatsiya, kompleksnyi metod”, Matematika (sb. perevodov), 9:3 (1965), 56–129

[15] Lozanovskii G. Ya., “O nekotorykh banakhovykh strukturakh. 4”, Sib. matem. zhurn., 14:1 (1973), 140–155 | MR | Zbl

[16] Solonnikov V. A., Uraltseva N. N., “Prostranstva Soboleva”, Izbrannye glavy analiza i vysshei algebry, LGU, L., 1981, 129–199

[17] Zabreiko N. P., “Idealnye prostranstva funktsii. I”, Vestn. Yarosl. un-ta, 8 (1974), 12–52 | MR

[18] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[19] Trudinger N. J., “An imbedding theorem for $H^0(G,\Omega)$ space”, Stud. math. (PRL), 50:1 (1974), 17–30 | MR | Zbl

[20] Korolev A. G., “Teoremy vlozheniya dlya anizotropnykh prostranstv Soboleva–Orlicha”, Vestn. MGU, 1983, no. 1, 32–37 | MR | Zbl