Convolution equations in the complex domain
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 171-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article investigates analytic solutions of a convolution equation and of systems of two convolution equations with a single unknown function. The characteristic functions of all the convolution operators studied here are entire functions of exponential type. A general representation is determined for solutions of homogeneous and inhomogeneous equations and of systems of such equations in the form of absolutely convergent series in entire functions (as a rule, exponentials forming an absolutely representing system). A criterion is established for solvability of a system of two inhomogeneous convolution equations with a single unknown function. The main results are obtained with the help of nontrivial expansions of zero in convex domains with respect to functions forming an absolutely representing system. Bibliography: 19 titles.
@article{SM_1986_55_1_a10,
     author = {Yu. F. Korobeinik},
     title = {Convolution equations in the complex domain},
     journal = {Sbornik. Mathematics},
     pages = {171--194},
     year = {1986},
     volume = {55},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a10/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - Convolution equations in the complex domain
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 171
EP  - 194
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_1_a10/
LA  - en
ID  - SM_1986_55_1_a10
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T Convolution equations in the complex domain
%J Sbornik. Mathematics
%D 1986
%P 171-194
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1986_55_1_a10/
%G en
%F SM_1986_55_1_a10
Yu. F. Korobeinik. Convolution equations in the complex domain. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 171-194. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a10/

[1] Korobeinik Yu. F., “O resheniyakh nekotorykh funktsionalnykh uravnenii v klassakh funktsii, analiticheskikh v vypuklykh oblastyakh”, Matem. sb., 75(117) (1968), 225–234 | MR | Zbl

[2] Korobeinik Yu. F., “Ob analiticheskikh resheniyakh integralnogo uravneniya s yadrom, zavisyaschim ot raznosti argumentov”, Matematicheskii analiz i ego prilozheniya. Rostov–na–Donu, 3, 1971, 3–19 | MR | Zbl

[3] Napalkov V. V., “Ob odnom klasse neodnorodnykh uravnenii tipa svertki”, UMN, 29:3 (1974), 217–218 | MR | Zbl

[4] Epifanov O. V., “Ob epimorfizme svertki v vypuklykh oblastyakh”, DAN SSSR, 217:1 (1974), 18–19 | MR | Zbl

[5] Leontev A. F., “O predstavlenii proizvolnykh funktsii ryadami Dirikhle”, DAN SSSR, 164:1 (1965), 40–42 | MR | Zbl

[6] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 325–355 | MR | Zbl

[7] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR

[8] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi analiz na vypuklykh oblastyakh”, Matem. sb., 88(130) (1972), 3–29

[9] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[10] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[11] Korobeinik Yu. F., “Interpolyatsionnye zadachi, netrivialnye razlozheniya nulya i predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 1066–1114 | MR | Zbl

[12] Abanin A. V., Nekotorye svoistva predstavlyayuschikh sistem i bazisov, Rostov-na-Donu, Avtoref. dis. $\dots$ kand. fiz.-matem. nauk, 1981

[13] Napalkov V. V., “O diskretnykh dostatochnykh mnozhestvakh v nekotorykh prostranstvakh tselykh funktsii”, DAN SSSR, 250:4 (1980), 809–812 | MR | Zbl

[14] Korobeinik Yu. F., “Lineinye operatory, perestanovochnye s differentsirovaniem i opredelennye v prostranstvakh funktsii, analiticheskikh v beskonechnykh oblastyakh”, Godishnik na VTUZ, Matematika, Sofiya, IX, no. 3, 1973, 35–44 | MR

[15] Korobeinik Yu. F., “Ob odnoi dvoistvennoi zadache. II. Prilozheniya k $LN^*$-prostranstvam i drugie voprosy”, Matem. sb., 98(140) (1975), 3–26 | MR | Zbl

[16] Bratischev A. V., “O razreshimosti interpolyatsionnoi zadachi v prostranstvakh $\bigl[\rho(r),H(\theta)\bigr]$ i $\bigl[\rho(r),H(\theta)\bigr]$”, Mekhanika sploshnoi sredy, Izd-vo Rostovskogo un-ta, Rostov-na-Donu, 1981, 49–53

[17] Krasichkov-Ternovskii I. F., “Dlya kazhdogo invariantnogo podprostranstva, dopuskayuschego spektralnyi analiz, suschestvuet metod approksimatsii”, Sibir. matem. zhurn., XXII:3 (1981), 74–90 | MR

[18] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[19] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, UMN, 36:1 (1981), 73–126 | MR | Zbl