Classes of analytic functions determined by best rational approximations in~$H_p$
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 1-18
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R_n(f,H_p)$ be the best approximation to the function $f$ in the Hardy space $H_p$ by rational functions of degree at most $n-1$. It is shown that, for example, $f\in H_p$ ($1$) satisfies the condition $\sum_{k=0}^\infty(2^{k\alpha}R_{2^k}(f,H_p))^\sigma\infty$ ($\alpha>0$, $\sigma=(\alpha+p^{-1})^{-1}$) if and only if $f$ belongs to the Hardy–Besov space $B_\sigma^\alpha$. Rational approximation is also considered in $H_p$ ($p\leqslant1$) and $H_\infty$. Some applications of the results are given.
Bibliography: 29 titles.
@article{SM_1986_55_1_a0,
author = {A. A. Pekarskii},
title = {Classes of analytic functions determined by best rational approximations in~$H_p$},
journal = {Sbornik. Mathematics},
pages = {1--18},
publisher = {mathdoc},
volume = {55},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a0/}
}
A. A. Pekarskii. Classes of analytic functions determined by best rational approximations in~$H_p$. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a0/