Classes of analytic functions determined by best rational approximations in~$H_p$
Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 1-18

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R_n(f,H_p)$ be the best approximation to the function $f$ in the Hardy space $H_p$ by rational functions of degree at most $n-1$. It is shown that, for example, $f\in H_p$ ($1$) satisfies the condition $\sum_{k=0}^\infty(2^{k\alpha}R_{2^k}(f,H_p))^\sigma\infty$ ($\alpha>0$, $\sigma=(\alpha+p^{-1})^{-1}$) if and only if $f$ belongs to the Hardy–Besov space $B_\sigma^\alpha$. Rational approximation is also considered in $H_p$ ($p\leqslant1$) and $H_\infty$. Some applications of the results are given. Bibliography: 29 titles.
@article{SM_1986_55_1_a0,
     author = {A. A. Pekarskii},
     title = {Classes of analytic functions determined by best rational approximations in~$H_p$},
     journal = {Sbornik. Mathematics},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_55_1_a0/}
}
TY  - JOUR
AU  - A. A. Pekarskii
TI  - Classes of analytic functions determined by best rational approximations in~$H_p$
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 1
EP  - 18
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_55_1_a0/
LA  - en
ID  - SM_1986_55_1_a0
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%T Classes of analytic functions determined by best rational approximations in~$H_p$
%J Sbornik. Mathematics
%D 1986
%P 1-18
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_55_1_a0/
%G en
%F SM_1986_55_1_a0
A. A. Pekarskii. Classes of analytic functions determined by best rational approximations in~$H_p$. Sbornik. Mathematics, Tome 55 (1986) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/SM_1986_55_1_a0/