Central extensions of the Zassenhaus algebra and their irreducible representations
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 457-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the Zassenhaus algebra $W_1(m)$ over a field of characteristic $p>3$ has, up to equivalence, a unique nontrivial central extension $\widetilde{W}_1(m)$ (the modular Virasoro algebra). For the Virasoro algebra we construct a generalized Casimir element. All the irreducible $\widetilde{W}_1(m)$-modules are described. It is shown that there is no simple graded Lie algebra with zero component $L_0\cong\widetilde{W}_1(m)$. Bibliography: 15 titles.
@article{SM_1986_54_2_a9,
     author = {A. S. Dzhumadil'daev},
     title = {Central extensions of the {Zassenhaus} algebra and their irreducible representations},
     journal = {Sbornik. Mathematics},
     pages = {457--474},
     year = {1986},
     volume = {54},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a9/}
}
TY  - JOUR
AU  - A. S. Dzhumadil'daev
TI  - Central extensions of the Zassenhaus algebra and their irreducible representations
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 457
EP  - 474
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_2_a9/
LA  - en
ID  - SM_1986_54_2_a9
ER  - 
%0 Journal Article
%A A. S. Dzhumadil'daev
%T Central extensions of the Zassenhaus algebra and their irreducible representations
%J Sbornik. Mathematics
%D 1986
%P 457-474
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_54_2_a9/
%G en
%F SM_1986_54_2_a9
A. S. Dzhumadil'daev. Central extensions of the Zassenhaus algebra and their irreducible representations. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 457-474. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a9/

[1] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 33:2 (1969), 251–322 | MR | Zbl

[2] Kostrikin A. I., “Neprivodimye graduirovannye algebry Li s komponentoi $L_0\cong W_1$”, Matem. zapiski Ural. gos. un-ta, Sverdlovsk, 1970, 92–103 | MR | Zbl

[3] Rudakov A. N., Shafarevich I. R., “Neprivodimye predstavleniya prostoi trekhmernoi algebry Li nad polem konechnoi kharakteristiki”, Matem. zametki, 2:5 (1967), 439–454 | MR | Zbl

[4] Krylyuk Ya. S., “Moduli nad algebrami Li, dopuskayuschie pervoe kartanovskoe prodolzhenie”, UMN, 34:2 (1979), 203–204 | MR | Zbl

[5] Melikyan G. M., “O prostykh algebrakh Li kharakteristiki 5”, UMN, 35:1 (1980), 203–204 | MR | Zbl

[6] Milner A. A., “Neprivodimye predstavleniya algebry Tsassenkhauza”, UMN, 30:6 (1975), 178 | MR | Zbl

[7] Yakovlev N. N., “O kogomologiyakh algebry Vitta”, Funktsion. analiz i ego pril., 9:3 (1975), 95–96 | MR | Zbl

[8] Gilmullin M. F., “Vtoraya gruppa kogomologii algebry Tsassenkhauza”, Sb. asp. rabot. Tochnye nauki, Izd-vo Kazanskogo un-ta, 1976, 37–40 | MR

[9] Gilmullin M. F., “Kogomologii algebry Tsassenkhauza”, Tezisy Vsesoyuzn. simpoziuma po teorii kolets, algebr i modulei., Novosibirsk, 1982, 36

[10] Feigin B. L., Fuks D. B., “Kososimmetricheskie invariantnye differentsialnye operatory na pryamoi i moduli Verma nad algebroi Virasoro”, Funktsion. analiz i ego pril., 16:2 (1982), 47–63 | MR | Zbl

[11] Kostrikin A. I., “Modulyarnye variatsii na temu Kartana”, Mezhdunarodnyi kongress matematikov. Nitstsa. Doklady sovetskikh matematikov, Nauka, M., 1972, 111–117

[12] Strade H., “Zur Darstellungstheorie von Lie-algebren”, Abh. math. Semin. Univ. Hamburg, 52 (1982), 67–82 | DOI | MR | Zbl

[13] Strade H., “Representations of the Witt algebra”, J. Algebra, 49 (1977), 595–605 | DOI | MR | Zbl

[14] Dzhumadildaev A. S., “O kogomologiyakh modulyarnykh algebr Li”, Matem. sb., 119(161) (1982), 132–149 | MR | Zbl

[15] Dzhumadildaev A. S., “Neprivodimye predstavleniya silno razreshimykh algebr Li nad polem polozhitelnoi kharakteristiki”, Matem. sb., 123(165) (1984), 212–229 | MR | Zbl