Central extensions of the Zassenhaus algebra and their irreducible representations
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 457-474

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Zassenhaus algebra $W_1(m)$ over a field of characteristic $p>3$ has, up to equivalence, a unique nontrivial central extension $\widetilde{W}_1(m)$ (the modular Virasoro algebra). For the Virasoro algebra we construct a generalized Casimir element. All the irreducible $\widetilde{W}_1(m)$-modules are described. It is shown that there is no simple graded Lie algebra with zero component $L_0\cong\widetilde{W}_1(m)$. Bibliography: 15 titles.
@article{SM_1986_54_2_a9,
     author = {A. S. Dzhumadil'daev},
     title = {Central extensions of the {Zassenhaus} algebra and their irreducible representations},
     journal = {Sbornik. Mathematics},
     pages = {457--474},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a9/}
}
TY  - JOUR
AU  - A. S. Dzhumadil'daev
TI  - Central extensions of the Zassenhaus algebra and their irreducible representations
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 457
EP  - 474
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_2_a9/
LA  - en
ID  - SM_1986_54_2_a9
ER  - 
%0 Journal Article
%A A. S. Dzhumadil'daev
%T Central extensions of the Zassenhaus algebra and their irreducible representations
%J Sbornik. Mathematics
%D 1986
%P 457-474
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_54_2_a9/
%G en
%F SM_1986_54_2_a9
A. S. Dzhumadil'daev. Central extensions of the Zassenhaus algebra and their irreducible representations. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 457-474. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a9/