Central extensions of the Zassenhaus algebra and their irreducible representations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 457-474
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the Zassenhaus algebra $W_1(m)$ over a field of characteristic $p>3$ has, up to equivalence, a unique nontrivial central extension $\widetilde{W}_1(m)$ (the modular Virasoro algebra). For the Virasoro algebra we construct a generalized Casimir element. All the irreducible $\widetilde{W}_1(m)$-modules are described. It is shown that there is no simple graded Lie algebra with zero component $L_0\cong\widetilde{W}_1(m)$.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1986_54_2_a9,
     author = {A. S. Dzhumadil'daev},
     title = {Central extensions of the {Zassenhaus} algebra and their irreducible representations},
     journal = {Sbornik. Mathematics},
     pages = {457--474},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a9/}
}
                      
                      
                    A. S. Dzhumadil'daev. Central extensions of the Zassenhaus algebra and their irreducible representations. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 457-474. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a9/
