On asymptotic ``eigenfunctions'' of the Cauchy problem for a~nonlinear parabolic equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 421-455
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The asymptotic ($t\to+\infty$) behavior of solutions of the Cauchy problem is studied for the semilinear parabolic equation
$$
u_t=\Delta u-u^\beta,\quad t>0,\ x\in R^N;\qquad u(0,x)=u_0(x)\geqslant0,\quad x\in R^N,
$$
where $\beta=\mathrm{const}>1$ and $u_0(x)\to0$ as $|x|\to+\infty$. The existence is established of an infinite collection (a continuum) of distinct self-similar solutions of the form $u_A(t,x)=(T+t)^{-1/(\beta-1)}\theta_A(\xi)$, $\xi=|x|/(T+t)^{1/2}$, where the function $\theta_A>0$ satisfies an ordinary differential equation. Conditions for the asymptotic stability of these solutions are established. It is shown that for $\beta\geqslant1+2/N$ there exist solutions of the problem whose behavior as $t\to+\infty$ is described by approximate self-similar solutions (ap.s.-s.s.'s) $u_a(t,x)$ which in the case $\beta>1+2/N$ coincide with a family of self-similar solutions of the heat equation $(u_a)_t=\Delta u_a$, while for $\beta=1+2/N$ and $u_0\in L^1(R^N)$ the ap.s.-s.s. has the form $u_a=[(T+t)\ln(T+t)]^{-N/2}c_N\exp(-|x|^2/4(T+t))$,
where $c_N=(N/2)^{N/2}(1+2/N)^{N^2/4}$.
Figures: 2. 
Bibliography: 78 titles.
			
            
            
            
          
        
      @article{SM_1986_54_2_a8,
     author = {V. A. Galaktionov and S. P. Kurdyumov and A. A. Samarskii},
     title = {On asymptotic ``eigenfunctions'' of the {Cauchy} problem for a~nonlinear parabolic equation},
     journal = {Sbornik. Mathematics},
     pages = {421--455},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a8/}
}
                      
                      
                    TY - JOUR AU - V. A. Galaktionov AU - S. P. Kurdyumov AU - A. A. Samarskii TI - On asymptotic ``eigenfunctions'' of the Cauchy problem for a~nonlinear parabolic equation JO - Sbornik. Mathematics PY - 1986 SP - 421 EP - 455 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1986_54_2_a8/ LA - en ID - SM_1986_54_2_a8 ER -
%0 Journal Article %A V. A. Galaktionov %A S. P. Kurdyumov %A A. A. Samarskii %T On asymptotic ``eigenfunctions'' of the Cauchy problem for a~nonlinear parabolic equation %J Sbornik. Mathematics %D 1986 %P 421-455 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1986_54_2_a8/ %G en %F SM_1986_54_2_a8
V. A. Galaktionov; S. P. Kurdyumov; A. A. Samarskii. On asymptotic ``eigenfunctions'' of the Cauchy problem for a~nonlinear parabolic equation. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 421-455. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a8/
