On asymptotic ``eigenfunctions'' of the Cauchy problem for a~nonlinear parabolic equation
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 421-455

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic ($t\to+\infty$) behavior of solutions of the Cauchy problem is studied for the semilinear parabolic equation $$ u_t=\Delta u-u^\beta,\quad t>0,\ x\in R^N;\qquad u(0,x)=u_0(x)\geqslant0,\quad x\in R^N, $$ where $\beta=\mathrm{const}>1$ and $u_0(x)\to0$ as $|x|\to+\infty$. The existence is established of an infinite collection (a continuum) of distinct self-similar solutions of the form $u_A(t,x)=(T+t)^{-1/(\beta-1)}\theta_A(\xi)$, $\xi=|x|/(T+t)^{1/2}$, where the function $\theta_A>0$ satisfies an ordinary differential equation. Conditions for the asymptotic stability of these solutions are established. It is shown that for $\beta\geqslant1+2/N$ there exist solutions of the problem whose behavior as $t\to+\infty$ is described by approximate self-similar solutions (ap.s.-s.s.'s) $u_a(t,x)$ which in the case $\beta>1+2/N$ coincide with a family of self-similar solutions of the heat equation $(u_a)_t=\Delta u_a$, while for $\beta=1+2/N$ and $u_0\in L^1(R^N)$ the ap.s.-s.s. has the form $u_a=[(T+t)\ln(T+t)]^{-N/2}c_N\exp(-|x|^2/4(T+t))$, where $c_N=(N/2)^{N/2}(1+2/N)^{N^2/4}$. Figures: 2. Bibliography: 78 titles.
@article{SM_1986_54_2_a8,
     author = {V. A. Galaktionov and S. P. Kurdyumov and A. A. Samarskii},
     title = {On asymptotic ``eigenfunctions'' of the {Cauchy} problem for a~nonlinear parabolic equation},
     journal = {Sbornik. Mathematics},
     pages = {421--455},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a8/}
}
TY  - JOUR
AU  - V. A. Galaktionov
AU  - S. P. Kurdyumov
AU  - A. A. Samarskii
TI  - On asymptotic ``eigenfunctions'' of the Cauchy problem for a~nonlinear parabolic equation
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 421
EP  - 455
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_2_a8/
LA  - en
ID  - SM_1986_54_2_a8
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%A S. P. Kurdyumov
%A A. A. Samarskii
%T On asymptotic ``eigenfunctions'' of the Cauchy problem for a~nonlinear parabolic equation
%J Sbornik. Mathematics
%D 1986
%P 421-455
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_54_2_a8/
%G en
%F SM_1986_54_2_a8
V. A. Galaktionov; S. P. Kurdyumov; A. A. Samarskii. On asymptotic ``eigenfunctions'' of the Cauchy problem for a~nonlinear parabolic equation. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 421-455. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a8/