On homogeneous polynomials of several variables on the complex sphere
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 409-414
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This article gives a generalization of a theorem of Ryll and Wojtaszczyk on the existence of a sequence of homogeneous polynomials $P_N$, $N=1,2,\dots$, in $d$ variables with degree $P_N=N$ for which
$$
\|P_N\|_{L^2(S^d)}\geqslant c_d\|P_N\|_{C(S^d)}>0,
$$
where $S^d$ is the sphere in $d$-dimensional complex space.
Bibliography: 11 titles.
			
            
            
            
          
        
      @article{SM_1986_54_2_a6,
     author = {B. S. Kashin},
     title = {On homogeneous polynomials of several variables on the complex sphere},
     journal = {Sbornik. Mathematics},
     pages = {409--414},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a6/}
}
                      
                      
                    B. S. Kashin. On homogeneous polynomials of several variables on the complex sphere. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 409-414. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a6/
