On homogeneous polynomials of several variables on the complex sphere
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 409-414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article gives a generalization of a theorem of Ryll and Wojtaszczyk on the existence of a sequence of homogeneous polynomials $P_N$, $N=1,2,\dots$, in $d$ variables with degree $P_N=N$ for which $$ \|P_N\|_{L^2(S^d)}\geqslant c_d\|P_N\|_{C(S^d)}>0, $$ where $S^d$ is the sphere in $d$-dimensional complex space. Bibliography: 11 titles.
@article{SM_1986_54_2_a6,
     author = {B. S. Kashin},
     title = {On homogeneous polynomials of several variables on the complex sphere},
     journal = {Sbornik. Mathematics},
     pages = {409--414},
     year = {1986},
     volume = {54},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a6/}
}
TY  - JOUR
AU  - B. S. Kashin
TI  - On homogeneous polynomials of several variables on the complex sphere
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 409
EP  - 414
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_2_a6/
LA  - en
ID  - SM_1986_54_2_a6
ER  - 
%0 Journal Article
%A B. S. Kashin
%T On homogeneous polynomials of several variables on the complex sphere
%J Sbornik. Mathematics
%D 1986
%P 409-414
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_54_2_a6/
%G en
%F SM_1986_54_2_a6
B. S. Kashin. On homogeneous polynomials of several variables on the complex sphere. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 409-414. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a6/

[1] Ryll J., Wojtaszczyk P., “On homogeneous polynomials on a complex ball”, Trans A. M. S., 276:1 (1983), 107–116 | DOI | MR | Zbl

[2] Aleksandrov A. B., “Vnutrennie funktsii na kompaktnykh prostranstvakh”, Funktsion. analiz, 18:2 (1984), 1–13 | MR | Zbl

[3] Aleksandrov A. B., “Suschestvovanie vnutrennikh funktsii v share”, Matem. sb., 118(160) (1982), 147–163 | MR | Zbl

[4] Low E., “A construction of inner functions on the unit ball in $\mathbf{C}^n$”, Invent. math., 67:2 (1982), 223–229 | DOI | MR | Zbl

[5] Kashin B. S., “O nekotorykh svoistvakh prostranstva trigonometricheskikh polinomov s ravnomernoi normoi”, Tr. MIAN, 145 (1980), 111–116 | MR | Zbl

[6] Kashin B. S., “O nekotorykh svoistvakh prostranstva trigonometricheskikh polinomov, svyazannykh s ravnomernoi skhodimostyu”, Soobsch. AN Gruz. SSR, 93:2 (1979), 281–284 | MR | Zbl

[7] Kashin B. S., “O poperechnikakh klassov Soboleva maloi gladkosti”, Vestn. MGU, ser. matem., mekhan., 1981, no. 5, 50–54 | MR | Zbl

[8] Koregin A. F., “Ob absolyutnoi skhodimosti kratnykh trigonometricheskikh ryadov s lakunami”, Vestn. MGU, ser. matem., mekhan., 1985, no. 2 | Zbl

[9] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, M., 1974

[10] Rudin W., Function theory in the unit ball of $\mathbf{C}^n$, Berlin–N.Y., 1980 | MR

[11] Olevskii A. M., “Suschestvovanie funktsii s neustranimymi osobennostyami Karlemana”, Dokl. AN SSSR, 238:4 (1978), 796–799 | MR | Zbl