On homogeneous polynomials of several variables on the complex sphere
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 409-414

Voir la notice de l'article provenant de la source Math-Net.Ru

This article gives a generalization of a theorem of Ryll and Wojtaszczyk on the existence of a sequence of homogeneous polynomials $P_N$, $N=1,2,\dots$, in $d$ variables with degree $P_N=N$ for which $$ \|P_N\|_{L^2(S^d)}\geqslant c_d\|P_N\|_{C(S^d)}>0, $$ where $S^d$ is the sphere in $d$-dimensional complex space. Bibliography: 11 titles.
@article{SM_1986_54_2_a6,
     author = {B. S. Kashin},
     title = {On homogeneous polynomials of several variables on the complex sphere},
     journal = {Sbornik. Mathematics},
     pages = {409--414},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a6/}
}
TY  - JOUR
AU  - B. S. Kashin
TI  - On homogeneous polynomials of several variables on the complex sphere
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 409
EP  - 414
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_2_a6/
LA  - en
ID  - SM_1986_54_2_a6
ER  - 
%0 Journal Article
%A B. S. Kashin
%T On homogeneous polynomials of several variables on the complex sphere
%J Sbornik. Mathematics
%D 1986
%P 409-414
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_54_2_a6/
%G en
%F SM_1986_54_2_a6
B. S. Kashin. On homogeneous polynomials of several variables on the complex sphere. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 409-414. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a6/