Normal subgroups of free constructions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 367-385
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the technique of group action on a tree is used to obtain solutions of the following problems. Suppose that the group $G$ is a free construction.
1. Describe the normal subgroups of $G$ not containing non-Abelian free subgroups.
2. Describe the normal subgroups $A$ and $B$ of $G$ if the mutual commutator subgroup $[A,B]$ does not contain non-Abelian free subgroups.
The results are applied to groups obtained by using a sequence of operations of taking $HNN$-extensions and forming free products with amalgamation.
Bibliography: 16 titles.
			
            
            
            
          
        
      @article{SM_1986_54_2_a4,
     author = {Yu. V. Tishin},
     title = {Normal subgroups of free constructions},
     journal = {Sbornik. Mathematics},
     pages = {367--385},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a4/}
}
                      
                      
                    Yu. V. Tishin. Normal subgroups of free constructions. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 367-385. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a4/
