Normal subgroups of free constructions
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 367-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the technique of group action on a tree is used to obtain solutions of the following problems. Suppose that the group $G$ is a free construction. 1. Describe the normal subgroups of $G$ not containing non-Abelian free subgroups. 2. Describe the normal subgroups $A$ and $B$ of $G$ if the mutual commutator subgroup $[A,B]$ does not contain non-Abelian free subgroups. The results are applied to groups obtained by using a sequence of operations of taking $HNN$-extensions and forming free products with amalgamation. Bibliography: 16 titles.
@article{SM_1986_54_2_a4,
     author = {Yu. V. Tishin},
     title = {Normal subgroups of free constructions},
     journal = {Sbornik. Mathematics},
     pages = {367--385},
     year = {1986},
     volume = {54},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Tishin
TI  - Normal subgroups of free constructions
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 367
EP  - 385
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_2_a4/
LA  - en
ID  - SM_1986_54_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Tishin
%T Normal subgroups of free constructions
%J Sbornik. Mathematics
%D 1986
%P 367-385
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_54_2_a4/
%G en
%F SM_1986_54_2_a4
Yu. V. Tishin. Normal subgroups of free constructions. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 367-385. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a4/

[1] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[2] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[3] Serr Zh.-P., “Derevya, amalgamy i $SL_2$”, Matematika (sb. perevodov), 18:1 (1974), 3–51 | Zbl

[4] Bass H., “Some remarks on group actions on trees”, Communs. in Algebra, 4:12 (1976), 1091–1126 | DOI | MR | Zbl

[5] Imrich W., “Subgroup theorems and graphs” (Combinatorial Mathematics V), Lect. Notes Math., 622, 1977, 1–27 | MR | Zbl

[6] Noskov G. A., Remeslennikov V. H., Romankov V. A., “Beskonechnye gruppy”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 17, VINITI, M., 1979, 65–157 | MR

[7] Karras A., Solitar D., “The subgroup of a free product of two groups with an amalgamated subgroup”, Trans. Amer. Math. Soc., 150:1 (1970), 227–255 | DOI | MR | Zbl

[8] Karras A., Solitar D., “Subgroups of $HNN$-groups and groups with one defining relation”, Can. J. Math., 23:4 (1971), 627–643 | MR | Zbl

[9] Karras A., Pietrowski A., Solitar D., “An improved subgroup theorem for $HNN$-groupswith some applications”, Can. J. Math., 26:1 (1974), 214–224 | MR | Zbl

[10] Fischer J., “The subgroups of a tree product of groups”, Trans. Amer. Math. Soc., 210:483 (1975), 27–50 | DOI | MR | Zbl

[11] Chebotar A. A., “Podgruppy grupp s odnim opredelyayuschim sootnosheniem, ne soderzhaschie svobodnykh podgrupp ranga 2”, Algebra i logika, 10:5 (1971), 570–586 | Zbl

[12] Chebotar A. A., “Podgruppy grupp s odnim opredelyayuschim sootnosheniem, obladayuschie normalnymi delitelyami, udovletvoryayuschimi tozhdestvu”, Sib. matem. zhurn., 16:1 (1975), 139–148 | Zbl

[13] Epstein D. B. A., “A result on free products with amalgamation”, J. London Math. Soc., 37:2 (1962), 130–132 | DOI | MR | Zbl

[14] Bagherzadeh G. H., “Commutativity in groups with bipolar structure”, J. London Math. Soc., 13:3 (1976), 443–453 | DOI | MR | Zbl

[15] Massi U., Stollings Dzh., Algebraicheskaya topologiya, Mir, M., 1977 | MR | Zbl

[16] Brodskii S. D., “O podgruppe Frattini svobodnogo proizvedeniya grupp s ob'edinennoi podgruppoi”, Algebraicheskie sistemy, Ivanovo, 1978, 3–6 | Zbl