Normal subgroups of free constructions
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 367-385

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the technique of group action on a tree is used to obtain solutions of the following problems. Suppose that the group $G$ is a free construction. 1. Describe the normal subgroups of $G$ not containing non-Abelian free subgroups. 2. Describe the normal subgroups $A$ and $B$ of $G$ if the mutual commutator subgroup $[A,B]$ does not contain non-Abelian free subgroups. The results are applied to groups obtained by using a sequence of operations of taking $HNN$-extensions and forming free products with amalgamation. Bibliography: 16 titles.
@article{SM_1986_54_2_a4,
     author = {Yu. V. Tishin},
     title = {Normal subgroups of free constructions},
     journal = {Sbornik. Mathematics},
     pages = {367--385},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Tishin
TI  - Normal subgroups of free constructions
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 367
EP  - 385
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_2_a4/
LA  - en
ID  - SM_1986_54_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Tishin
%T Normal subgroups of free constructions
%J Sbornik. Mathematics
%D 1986
%P 367-385
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_54_2_a4/
%G en
%F SM_1986_54_2_a4
Yu. V. Tishin. Normal subgroups of free constructions. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 367-385. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a4/