Methods of reduction of measurements in Hilbert spaces
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 525-549
Cet article a éte moissonné depuis la source Math-Net.Ru
The basic facts are given in the theory of random elements and random operators acting in Hilbert spaces. Reduction methods are developed for several models for a measurement scheme, including methods for a model with a random operator. Bibliography: 6 titles.
@article{SM_1986_54_2_a12,
author = {Yu. P. Pyt'ev},
title = {Methods of reduction of measurements in {Hilbert} spaces},
journal = {Sbornik. Mathematics},
pages = {525--549},
year = {1986},
volume = {54},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a12/}
}
Yu. P. Pyt'ev. Methods of reduction of measurements in Hilbert spaces. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 525-549. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a12/
[1] Pytev Yu. P., “Zadachi reduktsii v eksperimentalnykh issledovaniyakh”, Matem. sb., 120(162) (1983), 240–272 | MR
[2] Pytev Yu. P., “Psevdoobratnyi operator. Svoistva i primeneniya”, Matem. sb., 118(160) (1982), 19–49 | MR | Zbl
[3] Tikhonov A. N., Arsenin V. Ya, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR
[4] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach, Nauka, M., 1978
[5] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975
[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl