Prime vectors in degenerate lattices
Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 279-295 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the distribution of prime vectors (i.e., vectors with prime components) in degenerate lattices $AZ^n+\overline b$ is investigated, and asymptotic formulas are obtained for the fraction $\pi(N,AZ^n+\overline b)$ which are valid under certain restrictions on the matrix $A$, where $A\in Z^{m\times n}$, $\overline b\in Z^m$, and $\pi(N,AZ^n+\overline b)$ is the number of prime vectors of the degenerate lattice $AZ^n+\overline b$ with components not exceeding $N$. The main idea is to reduce the problem to that of solving systems of linear algebraic equations in prime numbers belonging to given arithmetic progressions. An asymptotic formula for the number of solutions of such systems is calculated with the help of a multidimensional variant of the circle method. Bibliography: 12 titles.
@article{SM_1986_54_2_a0,
     author = {M. I. Tulyaganova},
     title = {Prime vectors in degenerate lattices},
     journal = {Sbornik. Mathematics},
     pages = {279--295},
     year = {1986},
     volume = {54},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_2_a0/}
}
TY  - JOUR
AU  - M. I. Tulyaganova
TI  - Prime vectors in degenerate lattices
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 279
EP  - 295
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_2_a0/
LA  - en
ID  - SM_1986_54_2_a0
ER  - 
%0 Journal Article
%A M. I. Tulyaganova
%T Prime vectors in degenerate lattices
%J Sbornik. Mathematics
%D 1986
%P 279-295
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_54_2_a0/
%G en
%F SM_1986_54_2_a0
M. I. Tulyaganova. Prime vectors in degenerate lattices. Sbornik. Mathematics, Tome 54 (1986) no. 2, pp. 279-295. http://geodesic.mathdoc.fr/item/SM_1986_54_2_a0/

[1] Vinogradov I. M., Izbrannye trudy, Izd-vo AN SSSR, M., 1952 | MR

[2] Khua Lo-Gen, Additivnaya teoriya prostykh chisel, Tr. MIAN, 22, 1947 | MR | Zbl

[3] Wu Fang, “On the solutions of the systems of linear equations with prime variables”, Acta mathematica, Sinica, 7 (1957), 102–121

[4] Vinogradov A. I., “Ob odnoi probleme Khua Lo-Gena”, DAN SSSR, 151:2 (1963), 255–257 | MR | Zbl

[5] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[6] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1975 | MR | Zbl

[7] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 1, GITTL, M., 1956, s. 60

[8] Tulyaganova M. I., “Ob odnom obobschenii problemy Khua Lo-Gena”, DAN UzSSR, 1970, no. 1, 6–8 | Zbl

[9] Tulyaganova M. I., “O mnogomernykh analogakh problemy Khua Lo-Gena”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1981, no. 1, 38–43 | MR | Zbl

[10] Tulyaganova M. I., “Raspredelenie prostykh vektorov v tselochislennykh reshetkakh”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1981, no. 3, 37–40 | MR | Zbl

[11] Tulyaganova M. I., “Usrednennyi zakon raspredeleniya prostykh vektorov v tselochislennykh reshetkakh”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1983, no. 1, 28–31 | MR | Zbl

[12] Tulyaganova M. I., “Raspredelenie prostykh vektorov v tselochislennykh reshetkakh i mnogomernye analogi problemy Khua Lo-Gena”, Tezisy dokladov Vsesoyuznoi konferentsii “Teoriya transtsendentnykh chisel i ee prilozheniya”, MGU, 2–4 fevralya 1983, 143–144