Markov intervention of chance, and limit theorems
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 161-183
Voir la notice de l'article provenant de la source Math-Net.Ru
This article concerns properties of random processes $\mathfrak z_t$ ($t\geqslant0$) for which a Markov intervention time exists, i.e., a nonnegative random variable $\mathfrak w$ such that for a particular value of $\mathfrak z_{\mathfrak w}$ the collections $\{\mathfrak z_t\ (0\leqslant t\mathfrak w)\}$ and $\{\mathfrak z_{t+\mathfrak w}\ (t\geqslant0)\}$ are conditionally independent, and the conditional distributions of $\{\mathfrak z_{t+\mathfrak w}\ (t\geqslant0)\}$ (under the condition $\mathfrak z_{\mathfrak w}=x$) and
$\{\mathfrak z_t\ (t\geqslant0)\}$ (under the condition $\mathfrak z_0=x$) coincide. Such random processes generalize Markov and semi-Markov processes.
Bibliography: 10 titles.
@article{SM_1986_54_1_a8,
author = {V. M. Shurenkov},
title = {Markov intervention of chance, and limit theorems},
journal = {Sbornik. Mathematics},
pages = {161--183},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a8/}
}
V. M. Shurenkov. Markov intervention of chance, and limit theorems. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 161-183. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a8/