Markov intervention of chance, and limit theorems
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 161-183

Voir la notice de l'article provenant de la source Math-Net.Ru

This article concerns properties of random processes $\mathfrak z_t$ ($t\geqslant0$) for which a Markov intervention time exists, i.e., a nonnegative random variable $\mathfrak w$ such that for a particular value of $\mathfrak z_{\mathfrak w}$ the collections $\{\mathfrak z_t\ (0\leqslant t\mathfrak w)\}$ and $\{\mathfrak z_{t+\mathfrak w}\ (t\geqslant0)\}$ are conditionally independent, and the conditional distributions of $\{\mathfrak z_{t+\mathfrak w}\ (t\geqslant0)\}$ (under the condition $\mathfrak z_{\mathfrak w}=x$) and $\{\mathfrak z_t\ (t\geqslant0)\}$ (under the condition $\mathfrak z_0=x$) coincide. Such random processes generalize Markov and semi-Markov processes. Bibliography: 10 titles.
@article{SM_1986_54_1_a8,
     author = {V. M. Shurenkov},
     title = {Markov intervention of chance, and limit theorems},
     journal = {Sbornik. Mathematics},
     pages = {161--183},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a8/}
}
TY  - JOUR
AU  - V. M. Shurenkov
TI  - Markov intervention of chance, and limit theorems
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 161
EP  - 183
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a8/
LA  - en
ID  - SM_1986_54_1_a8
ER  - 
%0 Journal Article
%A V. M. Shurenkov
%T Markov intervention of chance, and limit theorems
%J Sbornik. Mathematics
%D 1986
%P 161-183
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_54_1_a8/
%G en
%F SM_1986_54_1_a8
V. M. Shurenkov. Markov intervention of chance, and limit theorems. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 161-183. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a8/