Markov intervention of chance, and limit theorems
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 161-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article concerns properties of random processes $\mathfrak z_t$ ($t\geqslant0$) for which a Markov intervention time exists, i.e., a nonnegative random variable $\mathfrak w$ such that for a particular value of $\mathfrak z_{\mathfrak w}$ the collections $\{\mathfrak z_t\ (0\leqslant t<\mathfrak w)\}$ and $\{\mathfrak z_{t+\mathfrak w}\ (t\geqslant0)\}$ are conditionally independent, and the conditional distributions of $\{\mathfrak z_{t+\mathfrak w}\ (t\geqslant0)\}$ (under the condition $\mathfrak z_{\mathfrak w}=x$) and $\{\mathfrak z_t\ (t\geqslant0)\}$ (under the condition $\mathfrak z_0=x$) coincide. Such random processes generalize Markov and semi-Markov processes. Bibliography: 10 titles.
@article{SM_1986_54_1_a8,
     author = {V. M. Shurenkov},
     title = {Markov intervention of chance, and limit theorems},
     journal = {Sbornik. Mathematics},
     pages = {161--183},
     year = {1986},
     volume = {54},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a8/}
}
TY  - JOUR
AU  - V. M. Shurenkov
TI  - Markov intervention of chance, and limit theorems
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 161
EP  - 183
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a8/
LA  - en
ID  - SM_1986_54_1_a8
ER  - 
%0 Journal Article
%A V. M. Shurenkov
%T Markov intervention of chance, and limit theorems
%J Sbornik. Mathematics
%D 1986
%P 161-183
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1986_54_1_a8/
%G en
%F SM_1986_54_1_a8
V. M. Shurenkov. Markov intervention of chance, and limit theorems. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 161-183. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a8/

[1] Kovalenko I. N., “Predelnye teoremy teorii nadezhnosti”, Kibernetika, 1977, no. 6, 106–116 | MR | Zbl

[2] Athreya K. B., McDonald D., Ney P., “Limit theorems for semi-Markov processes and renewal theory for Markov chains”, Ann. Probab., 1978, no. 6, 788–797 | DOI | MR | Zbl

[3] Shurenkov V. M., Ergodicheskie teoremy i smezhnye voprosy teorii sluchainykh protsessov, Naukova dumka, Kiev, 1981 | MR | Zbl

[4] Kaplan E. I., Silvestrov D. S., “Teoremy tipa printsipa invariantnosti dlya vozvratnykh polumarkovskikh protsessov s proizvolnym fazovym prostranstvom”, Teoriya veroyatnostei i ee primeneniya, XXIV:3 (1979), 529–541 | MR

[5] Lifshits B. A., “O tsentralnoi predelnoi teoreme dlya summ sluchainykh velichin, svyazannykh v tsep”, Teoriya veroyatnostei i ee primeneniya, XXIII:2 (1978), 295–312

[6] Revuz D., Markov chains., Elsevier, N.Y., 1975 | MR | Zbl

[7] Kharris T. E., “Suschestvovanie invariantnykh mer dlya nekotorykh markovskikh protsessov”, Matematika (sb. perevodov), 4:1 (1960), 131–143

[8] Shurenkov V. M., “K teorii markovskogo vosstanovleniya”, Teoriya veroyatnostei i ee primeneniya, XXIX:2 (1984), 248–263 | MR

[9] Shurenkov V. M., “Final Probabilities of Ergodic Markov processes”, Lecture Notes in Math. (1021, Probability Theory and Math. Statistics, Fourth USSR–Japan Symposium Proceedings, 1982), Springer-Verlag | MR

[10] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR