Positive solutions of second order elliptic equations in unbounded domains
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 129-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a second order uniformly elliptic operator defined in an unbounded domain $G$. The problem is considered of determining a solution positive in $G$ of the equation $Lu=0$ in $G$ with zero Dirichlet data on the boundary of the domain. The existence and uniqueness (to within multiplication by a positive constant) of a solution of this problem is established for some unbounded domains. Bibliography: 3 titles.
@article{SM_1986_54_1_a6,
     author = {E. M. Landis and N. S. Nadirashvili},
     title = {Positive solutions of second order elliptic equations in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a6/}
}
TY  - JOUR
AU  - E. M. Landis
AU  - N. S. Nadirashvili
TI  - Positive solutions of second order elliptic equations in unbounded domains
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 129
EP  - 134
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a6/
LA  - en
ID  - SM_1986_54_1_a6
ER  - 
%0 Journal Article
%A E. M. Landis
%A N. S. Nadirashvili
%T Positive solutions of second order elliptic equations in unbounded domains
%J Sbornik. Mathematics
%D 1986
%P 129-134
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_54_1_a6/
%G en
%F SM_1986_54_1_a6
E. M. Landis; N. S. Nadirashvili. Positive solutions of second order elliptic equations in unbounded domains. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 129-134. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a6/