Positive solutions of second order elliptic equations in unbounded domains
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 129-134
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L$ be a second order uniformly elliptic operator defined in an unbounded domain $G$. The problem is considered of determining a solution positive in $G$ of the equation $Lu=0$ in $G$ with zero Dirichlet data on the boundary of the domain. The existence and uniqueness (to within multiplication by a positive constant) of a solution of this problem is established for some unbounded domains.
Bibliography: 3 titles.
@article{SM_1986_54_1_a6,
author = {E. M. Landis and N. S. Nadirashvili},
title = {Positive solutions of second order elliptic equations in unbounded domains},
journal = {Sbornik. Mathematics},
pages = {129--134},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a6/}
}
TY - JOUR AU - E. M. Landis AU - N. S. Nadirashvili TI - Positive solutions of second order elliptic equations in unbounded domains JO - Sbornik. Mathematics PY - 1986 SP - 129 EP - 134 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a6/ LA - en ID - SM_1986_54_1_a6 ER -
E. M. Landis; N. S. Nadirashvili. Positive solutions of second order elliptic equations in unbounded domains. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 129-134. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a6/