Severi varieties
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 113-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper gives a classification of $N$-dimensional projective algebraic varieties $X\subset\mathbf P^N$, $X\not\subset\mathbf P^{N-1}$, $N=3n/2+2$, over an algebraically closed field of characteristic zero which can be isomorphically projected to a projective space of smaller dimension. Bibliography: 15 titles.
@article{SM_1986_54_1_a5,
     author = {F. L. Zak},
     title = {Severi varieties},
     journal = {Sbornik. Mathematics},
     pages = {113--127},
     year = {1986},
     volume = {54},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a5/}
}
TY  - JOUR
AU  - F. L. Zak
TI  - Severi varieties
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 113
EP  - 127
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a5/
LA  - en
ID  - SM_1986_54_1_a5
ER  - 
%0 Journal Article
%A F. L. Zak
%T Severi varieties
%J Sbornik. Mathematics
%D 1986
%P 113-127
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1986_54_1_a5/
%G en
%F SM_1986_54_1_a5
F. L. Zak. Severi varieties. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 113-127. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a5/

[1] Fujita T., “Projective threefolds with small secant varieties”, Sci. Papers. College of General Education. Univ. Tokyo, 32:1 (1982), 33–46 | MR | Zbl

[2] Fujita T., Roberts J., “Varieties with small secant varieties: the extremal case”, Amer. J. Math., 103 (1981), 953–976 | DOI | MR | Zbl

[3] Fulton W., Lazarsfeld R., “Connectivity and its applications in algebraic geometry”, Proc. Midwest Algebraic Geometry Conf. Univ. Illinois, 1980. Lecture Notes in Math. v. 862, p. 26–92, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | MR | Zbl

[4] Griffiths Ph., Harris J., “Algebraic geometry and local differential geometry”, Ann. Sci. ENS, 12 (1979), 355–452 | MR | Zbl

[5] Hartshorne R., “Varieties of small codimension in projective space”, Bull. Amer. Math. Soc., 80 (1974), 1017–1032 | DOI | MR | Zbl

[6] Khodzh V., Pido D., Metody algebraicheskoi geometrii, t. 2, IL, M., 1954

[7] Holme A., Roberts J., “Pinch points and multiple locus for generic projections of singular varieties”, Adv. Math., 33 (1979), 212–256 | DOI | MR | Zbl

[8] Jacobson N., Structure and representations of Jordan algebras, 39, Providence, Publ. Amer. Math. Soc., 1968 | MR | Zbl

[9] Lazarsfeld R., “An example of 16-dimensional projective variety with a 25-dimensional secant variety”, Math. Letters, 7 (1981), 1–4

[10] Scorza G., “Determinazione delle varieta a tre dimensioni di $S_r$ $(r\geq7)$ i cui $S_3$ tangenti si tagliano a due a due”, Rend. Girc. Mat. Palermo, 25 (1908), 193–204 ; Opera Scelte, v. 1, ed. Cremonese, Roma, 1960 | DOI | Zbl

[11] Segre C., “Sulle varieta che rappresentano le coppie di punti di due piani o spazi”, Rend. Circ. Mat. Palermo, 5 (1891), 192–204 ; Opere, v. 1, ed. Cremonese, Roma, 1957, 172–184 | DOI

[12] Semple J., “On representations of the $S_{k'}s$ of $S_n$ and of the Grassmann manifolds $G(k,n)$”, Proc. London Math. Soc., 32 (1931), 200–221 | DOI | Zbl

[13] Severi F., “Intorno si punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a suoi punti tripli apparenti”, Rend. Circ. Mat. Palermo, 15 (1901), 33–51 | DOI | Zbl

[14] Tango H., “Remarks on varieties with small secant varieties”, Bull. Kyoto Univ. Educ., 1982, no. 60, 1–10 | MR | Zbl

[15] Zak F. L., “Proektsii algebraicheskikh mnogoobrazii”, Matem. sb., 116(158) (1981), 593–602 | MR | Zbl