On approximate solution of systems of moment equations
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 81-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Moments of solutions of boundary value problems for evolution equations with random parameters (that is, coefficients, right-hand sides, and/or initial conditions) satisfy infinite systems of partial differential equations. Suppose that the following two conditions hold: 1) The operator in the boundary value problem is analytic, and the part of it linear in the unknown function is nondegenerate. 2) The random fluctuations in the parameters of the problem are sufficiently small. Then the solutions of the finite closed systems obtained from the infinite system of moment equations by equating all the moments of order greater than some $N$ to zero are approximate solutions of the original infinite system that converge to the exact solution as $N\to\infty$. Boundary value problems for quasilinear parabolic equations, nonlinear wave equations, Navier–Stokes systems, and so on are considered as examples. Bibliography: 15 titles.
@article{SM_1986_54_1_a3,
     author = {D. A. Khrychev},
     title = {On approximate solution of systems of moment equations},
     journal = {Sbornik. Mathematics},
     pages = {81--98},
     year = {1986},
     volume = {54},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a3/}
}
TY  - JOUR
AU  - D. A. Khrychev
TI  - On approximate solution of systems of moment equations
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 81
EP  - 98
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a3/
LA  - en
ID  - SM_1986_54_1_a3
ER  - 
%0 Journal Article
%A D. A. Khrychev
%T On approximate solution of systems of moment equations
%J Sbornik. Mathematics
%D 1986
%P 81-98
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1986_54_1_a3/
%G en
%F SM_1986_54_1_a3
D. A. Khrychev. On approximate solution of systems of moment equations. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 81-98. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a3/

[1] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, Ch. 1, Nauka, M., 1965; Ч. 2, Наука, М., 1967

[2] Klauder Dzh., Sudarshan E., Osnovy kvantovoi optiki, Mir, M., 1970

[3] Moffat G., Vozbuzhdenie magnitnogo polya v provodyaschei srede, Mir, M., 1980

[4] Kreichnan R. X., “Problema zamykaniya v teorii turbulentnosti”, Gidrodinamicheskaya neustoichivost, Mir, M., 1964, 231–264

[5] Vishik M. I., Fursikov A. V., “Analiticheskie pervye integraly nelineinykh parabolicheskikh v smysle I. G. Petrovskogo sistem differentsialnykh uravnenii i ikh prilozheniya”, UMN, 29:2 (1974), 123–153 | MR | Zbl

[6] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[7] Khrychev D. A., Problema zamykaniya dlya mnogovremennykh momentov pri malykh nachalnykh usloviyakh, Rukopis dep. v VINITI 16.09.81, 5222–81 Dep.

[8] Treves F., Topological Vector Spaces, Distributions and Kernels, Acad. Press, New York, 1967 | MR | Zbl

[9] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[10] Vainberg M. M., Trenogii V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[11] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[12] Kuksin S. B., “Diffeomorfizmy funktsionalnykh prostranstv, otvechayuschie kvazilineinym parabolicheskim uravneniyam”, Matem. sb., 117(159) (1982), 359–378 | MR | Zbl

[13] Kuksin S. B., Zavisimost ot nachalnykh uslovii reshenii nelineinykh evolyutsionnykh uravnenii, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1980

[14] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[15] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl