A non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 239-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author proposes a new scheme of a collecting process in groups, and by means of it constructs a non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian. This variety is a previously unknown cover of the variety of Abelian lattice-ordered groups. Bibliography: 8 titles.
@article{SM_1986_54_1_a11,
     author = {V. M. Kopytov},
     title = {A~non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is {Abelian}},
     journal = {Sbornik. Mathematics},
     pages = {239--257},
     year = {1986},
     volume = {54},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a11/}
}
TY  - JOUR
AU  - V. M. Kopytov
TI  - A non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 239
EP  - 257
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a11/
LA  - en
ID  - SM_1986_54_1_a11
ER  - 
%0 Journal Article
%A V. M. Kopytov
%T A non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian
%J Sbornik. Mathematics
%D 1986
%P 239-257
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1986_54_1_a11/
%G en
%F SM_1986_54_1_a11
V. M. Kopytov. A non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 239-257. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a11/

[1] “Problems lists. Ordered algebraic structures”, Notice Amer. Math. Soc., 29 (1982), 327

[2] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1981 | MR

[3] Kopytov V. M., Itogi nauki. Uporyadochennye gruppy. Algebra. geometriya. topologiya, 19, VINITI, M., 1981, 3–29 | MR | Zbl

[4] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl

[5] Scrimger E. B., “A large class of small varieties of lattice-ordered groups”, Proc. Amer. Math. Soc., 51 (1975), 301–306 | DOI | MR | Zbl

[6] Medvedev N. Ya., “O reshetke mnogoobrazii reshetochno uporyadochennykh grupp i algebr Li”, Algebra i logika, 16:1 (1977), 40–45 | MR | Zbl

[7] Gurchenkov S. A., “O minimalnykh mnogoobraziyakh $l$-grupp”, Algebra i logika, 21:2 (1982), 131–137 | MR | Zbl

[8] Kopytov V. M., “O mnogoobraziyakh $l$-grupp”, XVII Vsesoyuznaya algebraicheskaya konferentsiya (tez. dokl.), ch. 1, Minsk, 1983, 101 | Zbl