@article{SM_1986_54_1_a11,
author = {V. M. Kopytov},
title = {A~non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is {Abelian}},
journal = {Sbornik. Mathematics},
pages = {239--257},
year = {1986},
volume = {54},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a11/}
}
V. M. Kopytov. A non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 239-257. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a11/
[1] “Problems lists. Ordered algebraic structures”, Notice Amer. Math. Soc., 29 (1982), 327
[2] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1981 | MR
[3] Kopytov V. M., Itogi nauki. Uporyadochennye gruppy. Algebra. geometriya. topologiya, 19, VINITI, M., 1981, 3–29 | MR | Zbl
[4] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl
[5] Scrimger E. B., “A large class of small varieties of lattice-ordered groups”, Proc. Amer. Math. Soc., 51 (1975), 301–306 | DOI | MR | Zbl
[6] Medvedev N. Ya., “O reshetke mnogoobrazii reshetochno uporyadochennykh grupp i algebr Li”, Algebra i logika, 16:1 (1977), 40–45 | MR | Zbl
[7] Gurchenkov S. A., “O minimalnykh mnogoobraziyakh $l$-grupp”, Algebra i logika, 21:2 (1982), 131–137 | MR | Zbl
[8] Kopytov V. M., “O mnogoobraziyakh $l$-grupp”, XVII Vsesoyuznaya algebraicheskaya konferentsiya (tez. dokl.), ch. 1, Minsk, 1983, 101 | Zbl