A~non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 239-257

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proposes a new scheme of a collecting process in groups, and by means of it constructs a non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian. This variety is a previously unknown cover of the variety of Abelian lattice-ordered groups. Bibliography: 8 titles.
@article{SM_1986_54_1_a11,
     author = {V. M. Kopytov},
     title = {A~non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is {Abelian}},
     journal = {Sbornik. Mathematics},
     pages = {239--257},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a11/}
}
TY  - JOUR
AU  - V. M. Kopytov
TI  - A~non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 239
EP  - 257
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a11/
LA  - en
ID  - SM_1986_54_1_a11
ER  - 
%0 Journal Article
%A V. M. Kopytov
%T A~non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian
%J Sbornik. Mathematics
%D 1986
%P 239-257
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_54_1_a11/
%G en
%F SM_1986_54_1_a11
V. M. Kopytov. A~non-Abelian variety of lattice-ordered groups in which every soluble $l$-group is Abelian. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 239-257. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a11/