The geometric structure of regions, and direct theorems of the constructive theory of functions
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 39-56

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions and necessary conditions close to them are obtained for a bounded domain $G$ with Jordan boundary $L=\partial G$ to admit direct theorems of approximation theory in terms of the distance $\rho_{1+\frac1n}(z)$ from boundary points $z\in L$ to the $\bigl(1+\frac1n\bigr)$th level line of the function that maps the complement of the domain on the exterior of the unit disk. Bibliography: 21 titles.
@article{SM_1986_54_1_a1,
     author = {V. V. Andrievskii},
     title = {The geometric structure of regions, and direct theorems of the constructive theory of functions},
     journal = {Sbornik. Mathematics},
     pages = {39--56},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a1/}
}
TY  - JOUR
AU  - V. V. Andrievskii
TI  - The geometric structure of regions, and direct theorems of the constructive theory of functions
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 39
EP  - 56
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a1/
LA  - en
ID  - SM_1986_54_1_a1
ER  - 
%0 Journal Article
%A V. V. Andrievskii
%T The geometric structure of regions, and direct theorems of the constructive theory of functions
%J Sbornik. Mathematics
%D 1986
%P 39-56
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_54_1_a1/
%G en
%F SM_1986_54_1_a1
V. V. Andrievskii. The geometric structure of regions, and direct theorems of the constructive theory of functions. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 39-56. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a1/