The geometric structure of regions, and direct theorems of the constructive theory of functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 39-56
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Sufficient conditions and necessary conditions close to them are obtained for a bounded domain $G$ with Jordan boundary $L=\partial G$ to admit direct theorems of approximation theory in terms of the distance $\rho_{1+\frac1n}(z)$ from boundary points $z\in L$ to the $\bigl(1+\frac1n\bigr)$th level line of the function that maps the complement of the domain on the exterior of the unit disk.
Bibliography: 21 titles.
			
            
            
            
          
        
      @article{SM_1986_54_1_a1,
     author = {V. V. Andrievskii},
     title = {The geometric structure of regions, and direct theorems of the constructive theory of functions},
     journal = {Sbornik. Mathematics},
     pages = {39--56},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a1/}
}
                      
                      
                    TY - JOUR AU - V. V. Andrievskii TI - The geometric structure of regions, and direct theorems of the constructive theory of functions JO - Sbornik. Mathematics PY - 1986 SP - 39 EP - 56 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a1/ LA - en ID - SM_1986_54_1_a1 ER -
V. V. Andrievskii. The geometric structure of regions, and direct theorems of the constructive theory of functions. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 39-56. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a1/
