Asymptotics as $t\to\infty$ of solutions of a problem of mathematical physics
Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 1-37

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions are considered of the mixed problem of S. L. Sobolev $$ \frac{\partial^2}{\partial t^2}\biggl(\frac{\partial^2u}{\partial x^2_1}+\frac{\partial^2u}{\partial x_2^2}\biggr)+\frac{\partial^2u}{\partial x_2^2}=0 \quad\text{in}\quad \Omega,\qquad u\big|_{\partial\Omega}=0, $$ $u|_{t=0}=u_0$, $u_t|_{t=0}=u_1$, where $\Omega$ is the complement of a simply connected, compact, convex set in $R^2$. Asymptotic representations are given for a solution of this problem as $t\to\infty$. A boundary-layer phenomenon is discovered in a neighborhood of $\partial\Omega$. Bibliography: 15 titles.
@article{SM_1986_54_1_a0,
     author = {V. V. Skazka},
     title = {Asymptotics as $t\to\infty$ of solutions of a problem of mathematical physics},
     journal = {Sbornik. Mathematics},
     pages = {1--37},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_54_1_a0/}
}
TY  - JOUR
AU  - V. V. Skazka
TI  - Asymptotics as $t\to\infty$ of solutions of a problem of mathematical physics
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 1
EP  - 37
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_54_1_a0/
LA  - en
ID  - SM_1986_54_1_a0
ER  - 
%0 Journal Article
%A V. V. Skazka
%T Asymptotics as $t\to\infty$ of solutions of a problem of mathematical physics
%J Sbornik. Mathematics
%D 1986
%P 1-37
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_54_1_a0/
%G en
%F SM_1986_54_1_a0
V. V. Skazka. Asymptotics as $t\to\infty$ of solutions of a problem of mathematical physics. Sbornik. Mathematics, Tome 54 (1986) no. 1, pp. 1-37. http://geodesic.mathdoc.fr/item/SM_1986_54_1_a0/