On typical behavior of conditional exponential stability under perturbations
Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 433-455
Cet article a éte moissonné depuis la source Math-Net.Ru
The author proves that it is typical for the exponentially separated subspace of slow solutions of a system of equations in variations to depend continuously on the system being linearized and on the initial value of the solution along which the system in variations is taken. Bibliography: 5 titles.
@article{SM_1986_53_2_a9,
author = {V. M. Millionshchikov},
title = {On typical behavior of conditional exponential stability under perturbations},
journal = {Sbornik. Mathematics},
pages = {433--455},
year = {1986},
volume = {53},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_53_2_a9/}
}
V. M. Millionshchikov. On typical behavior of conditional exponential stability under perturbations. Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 433-455. http://geodesic.mathdoc.fr/item/SM_1986_53_2_a9/
[1] Millionschikov V. M., “Ob indeksakh eksponentsialnoi razdelennosti”, Matem. sb., 124(166) (1984), 451–485 | MR | Zbl
[2] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970
[3] Burbaki N., Obschaya topologiya. Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva. Svodka rezultatov, Nauka, M., 1975
[4] Baire R., Lecons sur les fonctions discontinues, Gauther–Villars, Paris, 1905 | Zbl
[5] Khausdorf F., Teoriya mnozhestv, ONTI, M.-L., 1937