On typical behavior of conditional exponential stability under perturbations
Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 433-455 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author proves that it is typical for the exponentially separated subspace of slow solutions of a system of equations in variations to depend continuously on the system being linearized and on the initial value of the solution along which the system in variations is taken. Bibliography: 5 titles.
@article{SM_1986_53_2_a9,
     author = {V. M. Millionshchikov},
     title = {On typical behavior of conditional exponential stability under perturbations},
     journal = {Sbornik. Mathematics},
     pages = {433--455},
     year = {1986},
     volume = {53},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_53_2_a9/}
}
TY  - JOUR
AU  - V. M. Millionshchikov
TI  - On typical behavior of conditional exponential stability under perturbations
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 433
EP  - 455
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_53_2_a9/
LA  - en
ID  - SM_1986_53_2_a9
ER  - 
%0 Journal Article
%A V. M. Millionshchikov
%T On typical behavior of conditional exponential stability under perturbations
%J Sbornik. Mathematics
%D 1986
%P 433-455
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_53_2_a9/
%G en
%F SM_1986_53_2_a9
V. M. Millionshchikov. On typical behavior of conditional exponential stability under perturbations. Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 433-455. http://geodesic.mathdoc.fr/item/SM_1986_53_2_a9/

[1] Millionschikov V. M., “Ob indeksakh eksponentsialnoi razdelennosti”, Matem. sb., 124(166) (1984), 451–485 | MR | Zbl

[2] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[3] Burbaki N., Obschaya topologiya. Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva. Svodka rezultatov, Nauka, M., 1975

[4] Baire R., Lecons sur les fonctions discontinues, Gauther–Villars, Paris, 1905 | Zbl

[5] Khausdorf F., Teoriya mnozhestv, ONTI, M.-L., 1937