Approximation of solutions of elliptic problems in domains with noncompact boundaries by solutions of exterior or interior problems
Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 551-561
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Omega^R$ ($R>0$) be a family of domains approximating a domain $\Omega^\infty$ as $R\to\infty$. For example, $\Omega^R$ can be a family of expanding domains whose union over all $R$ is $\Omega^\infty$, or a family of shrinking domains whose intersection is $\Omega^\infty$. Let $\mathfrak A_R$ be the operator corresponding to a formally symmetric elliptic boundary value problem in $\Omega^R$, and let $u_\varepsilon^R=(\mathfrak A_R+i\varepsilon)^{-1}f$. Conditions are determined under which $u_\varepsilon^R$ converges to a solution of the limit problem as $R\to\infty$, or as $\varepsilon\to0$ and $R\to\infty$ simultaneously.
Figures: 2.
Bibliography: 10 titles.
@article{SM_1986_53_2_a15,
author = {M. Ya. Spiridonov},
title = {Approximation of solutions of elliptic problems in domains with noncompact boundaries by solutions of exterior or interior problems},
journal = {Sbornik. Mathematics},
pages = {551--561},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_53_2_a15/}
}
TY - JOUR AU - M. Ya. Spiridonov TI - Approximation of solutions of elliptic problems in domains with noncompact boundaries by solutions of exterior or interior problems JO - Sbornik. Mathematics PY - 1986 SP - 551 EP - 561 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1986_53_2_a15/ LA - en ID - SM_1986_53_2_a15 ER -
%0 Journal Article %A M. Ya. Spiridonov %T Approximation of solutions of elliptic problems in domains with noncompact boundaries by solutions of exterior or interior problems %J Sbornik. Mathematics %D 1986 %P 551-561 %V 53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1986_53_2_a15/ %G en %F SM_1986_53_2_a15
M. Ya. Spiridonov. Approximation of solutions of elliptic problems in domains with noncompact boundaries by solutions of exterior or interior problems. Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 551-561. http://geodesic.mathdoc.fr/item/SM_1986_53_2_a15/