Approximation of solutions of elliptic problems in domains with noncompact boundaries by solutions of exterior or interior problems
Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 551-561 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Omega^R$ ($R>0$) be a family of domains approximating a domain $\Omega^\infty$ as $R\to\infty$. For example, $\Omega^R$ can be a family of expanding domains whose union over all $R$ is $\Omega^\infty$, or a family of shrinking domains whose intersection is $\Omega^\infty$. Let $\mathfrak A_R$ be the operator corresponding to a formally symmetric elliptic boundary value problem in $\Omega^R$, and let $u_\varepsilon^R=(\mathfrak A_R+i\varepsilon)^{-1}f$. Conditions are determined under which $u_\varepsilon^R$ converges to a solution of the limit problem as $R\to\infty$, or as $\varepsilon\to0$ and $R\to\infty$ simultaneously. Figures: 2. Bibliography: 10 titles.
@article{SM_1986_53_2_a15,
     author = {M. Ya. Spiridonov},
     title = {Approximation of solutions of elliptic problems in domains with noncompact boundaries by solutions of exterior or interior problems},
     journal = {Sbornik. Mathematics},
     pages = {551--561},
     year = {1986},
     volume = {53},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_53_2_a15/}
}
TY  - JOUR
AU  - M. Ya. Spiridonov
TI  - Approximation of solutions of elliptic problems in domains with noncompact boundaries by solutions of exterior or interior problems
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 551
EP  - 561
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1986_53_2_a15/
LA  - en
ID  - SM_1986_53_2_a15
ER  - 
%0 Journal Article
%A M. Ya. Spiridonov
%T Approximation of solutions of elliptic problems in domains with noncompact boundaries by solutions of exterior or interior problems
%J Sbornik. Mathematics
%D 1986
%P 551-561
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1986_53_2_a15/
%G en
%F SM_1986_53_2_a15
M. Ya. Spiridonov. Approximation of solutions of elliptic problems in domains with noncompact boundaries by solutions of exterior or interior problems. Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 551-561. http://geodesic.mathdoc.fr/item/SM_1986_53_2_a15/

[1] Agranovich M. S, Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | Zbl

[2] Vainberg B. R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, izd-vo MGU, M., 1982 | MR | Zbl

[3] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[4] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[5] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[6] Sveshnikov A. G., “Printsip predelnogo pogloscheniya dlya volnovoda”, DAN SSSR, 80:3 (1951), 345–347 | Zbl

[7] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[8] Shimon L., “Ob approksimatsii reshenii kraevykh zadach v oblastyakh s neogranichennoi granitsei”, Matem. sb., 91(133) (1973), 488–499 | Zbl

[9] Shimon L., Approksimatsiya reshenii ellipticheskikh kraevykh zadach v neogranichennykh oblastyakh resheniyami zadach v ogranichennykh oblastyakh, Avtoref. dis. ... kand. fiz.- matem. nauk, MGU, M., 1973

[10] Eidis D. M., “O printsipe predelnogo pogloscheniya”, Matem. sb., 57(99) (1962), 13–44