Integrability of the Euler equations associated with filtrations of semisimple Lie algebras
Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 541-549

Voir la notice de l'article provenant de la source Math-Net.Ru

Bogoyavlenskii proposed for symmetric operators a construction connected with filtrations of Lie algebras, for which the Euler equations have a large set of integrals. In this article integrability in the Liouville sense is proved for the Euler equations on a semisimple Lie algebra with symmetric operator constructed from a filtration of Lie algebras that is connected with a chain of involution automorphisms. Bibliography: 9 titles.
@article{SM_1986_53_2_a14,
     author = {I. V. Mykytyuk},
     title = {Integrability of the {Euler} equations associated with filtrations of semisimple {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {541--549},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_53_2_a14/}
}
TY  - JOUR
AU  - I. V. Mykytyuk
TI  - Integrability of the Euler equations associated with filtrations of semisimple Lie algebras
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 541
EP  - 549
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_53_2_a14/
LA  - en
ID  - SM_1986_53_2_a14
ER  - 
%0 Journal Article
%A I. V. Mykytyuk
%T Integrability of the Euler equations associated with filtrations of semisimple Lie algebras
%J Sbornik. Mathematics
%D 1986
%P 541-549
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_53_2_a14/
%G en
%F SM_1986_53_2_a14
I. V. Mykytyuk. Integrability of the Euler equations associated with filtrations of semisimple Lie algebras. Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 541-549. http://geodesic.mathdoc.fr/item/SM_1986_53_2_a14/