Locally finite and locally projectively nilpotent ideals of topological rings
Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 291-305

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in an arbitrary compact ring the Jacobson radical is projectively nilpotent, and also that in any locally compact ring there exists a largesr closed locally projectively nilpotent ideal containing all one-sided locally projective nilpotent ideals. Bibliography: 10 titles.
@article{SM_1986_53_2_a0,
     author = {M. I. Ursul},
     title = {Locally finite and locally projectively nilpotent ideals of topological rings},
     journal = {Sbornik. Mathematics},
     pages = {291--305},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_53_2_a0/}
}
TY  - JOUR
AU  - M. I. Ursul
TI  - Locally finite and locally projectively nilpotent ideals of topological rings
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 291
EP  - 305
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_53_2_a0/
LA  - en
ID  - SM_1986_53_2_a0
ER  - 
%0 Journal Article
%A M. I. Ursul
%T Locally finite and locally projectively nilpotent ideals of topological rings
%J Sbornik. Mathematics
%D 1986
%P 291-305
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_53_2_a0/
%G en
%F SM_1986_53_2_a0
M. I. Ursul. Locally finite and locally projectively nilpotent ideals of topological rings. Sbornik. Mathematics, Tome 53 (1986) no. 2, pp. 291-305. http://geodesic.mathdoc.fr/item/SM_1986_53_2_a0/