Maximally mobile spaces of hyperplane elements with a general affine connection
Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 169-182
Cet article a éte moissonné depuis la source Math-Net.Ru
The author defines the algebraic tensor structures which characterize the maximally mobile spaces of hyperplane elements with a general affine connection, and establishes the maximal orders of the groups of motions $G_r$ in these spaces. The main aim is to determine a tensor test for a maximally mobile space. Bibliography: 5 titles.
@article{SM_1986_53_1_a8,
author = {A. I. Egorov},
title = {Maximally mobile spaces of hyperplane elements with a~general affine connection},
journal = {Sbornik. Mathematics},
pages = {169--182},
year = {1986},
volume = {53},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_53_1_a8/}
}
A. I. Egorov. Maximally mobile spaces of hyperplane elements with a general affine connection. Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 169-182. http://geodesic.mathdoc.fr/item/SM_1986_53_1_a8/
[1] Kobayasi Sh., Nomidzu S., Osnovy differentsialnoi geometrii, T. 1, 2, Nauka, M., 1981
[2] Laptev B. L., “Proizvodnaya Li v prostranstvakh opornykh elementov”, Tr. seminara po vekt. i tenz. analizu, Izd-vo MGU, M., 1956, No 10, 227–248 | MR
[3] Egorov I. P., “Dvizheniya v prostranstvakh affinnoi svyaznosti”, Zapiski Penzenskogo ped. in-ta, 1965, 5–179
[4] Egorov A. I., “O dvizheniyakh v prostranstvakh giperploskostnykh elementov obschei affinnoi svyaznosti”, Differentsialnaya geometriya, Saratov, 1981, 9–17 | Zbl
[5] Urbonas A. P., “O dvizheniyakh v prostranstvakh giperploskostnykh elementov”, Litov. matem. sb., 11:2 (1971), 397–399 | MR