Spherical harmonics and subharmonic functions
Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 147-167

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of Fourier series for entire and meromorphic functions was developed by Rubel and Taylor. Rubel conjectured that similar results are valid for subharmonic functions in $\mathbf R^m$, $m\geqslant3$, and suggested the use of spherical harmonics. In this paper a positive solution is given to this conjecture. As corollaries, many-dimensional analogues of classical theorems on entire functions due to Weierstrass, Borel and Lindelöf are deduced. Bibliography: 23 titles.
@article{SM_1986_53_1_a7,
     author = {A. A. Kondratyuk},
     title = {Spherical harmonics and subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {147--167},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_53_1_a7/}
}
TY  - JOUR
AU  - A. A. Kondratyuk
TI  - Spherical harmonics and subharmonic functions
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 147
EP  - 167
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_53_1_a7/
LA  - en
ID  - SM_1986_53_1_a7
ER  - 
%0 Journal Article
%A A. A. Kondratyuk
%T Spherical harmonics and subharmonic functions
%J Sbornik. Mathematics
%D 1986
%P 147-167
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_53_1_a7/
%G en
%F SM_1986_53_1_a7
A. A. Kondratyuk. Spherical harmonics and subharmonic functions. Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 147-167. http://geodesic.mathdoc.fr/item/SM_1986_53_1_a7/