Asymptotics of the solutions of some higher order elliptic equations in conical domains
Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 89-117
Voir la notice de l'article provenant de la source Math-Net.Ru
For the equation $((-1)^mP(D_x,D_y)+D_y)u=f$, where $P$ is a homogeneous positive polynomial of degree $2m$, $x\in\mathbf R^2$ and $y\in\mathbf R^1$, the first boundary value problem is considered in a conical domain. The asymptotics of the solution at infinity is studied under the condition that the right side and the boundary functions asymptotically coincide with polynomials.
Bibliography: 7 titles.
@article{SM_1986_53_1_a4,
author = {A. M. Il'in and E. F. Lelikova},
title = {Asymptotics of the solutions of some higher order elliptic equations in conical domains},
journal = {Sbornik. Mathematics},
pages = {89--117},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_53_1_a4/}
}
TY - JOUR AU - A. M. Il'in AU - E. F. Lelikova TI - Asymptotics of the solutions of some higher order elliptic equations in conical domains JO - Sbornik. Mathematics PY - 1986 SP - 89 EP - 117 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1986_53_1_a4/ LA - en ID - SM_1986_53_1_a4 ER -
A. M. Il'in; E. F. Lelikova. Asymptotics of the solutions of some higher order elliptic equations in conical domains. Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 89-117. http://geodesic.mathdoc.fr/item/SM_1986_53_1_a4/