Asymptotics of the solutions of some higher order elliptic equations in conical domains
Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 89-117

Voir la notice de l'article provenant de la source Math-Net.Ru

For the equation $((-1)^mP(D_x,D_y)+D_y)u=f$, where $P$ is a homogeneous positive polynomial of degree $2m$, $x\in\mathbf R^2$ and $y\in\mathbf R^1$, the first boundary value problem is considered in a conical domain. The asymptotics of the solution at infinity is studied under the condition that the right side and the boundary functions asymptotically coincide with polynomials. Bibliography: 7 titles.
@article{SM_1986_53_1_a4,
     author = {A. M. Il'in and E. F. Lelikova},
     title = {Asymptotics of the solutions of some higher order elliptic equations in conical domains},
     journal = {Sbornik. Mathematics},
     pages = {89--117},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_53_1_a4/}
}
TY  - JOUR
AU  - A. M. Il'in
AU  - E. F. Lelikova
TI  - Asymptotics of the solutions of some higher order elliptic equations in conical domains
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 89
EP  - 117
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_53_1_a4/
LA  - en
ID  - SM_1986_53_1_a4
ER  - 
%0 Journal Article
%A A. M. Il'in
%A E. F. Lelikova
%T Asymptotics of the solutions of some higher order elliptic equations in conical domains
%J Sbornik. Mathematics
%D 1986
%P 89-117
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_53_1_a4/
%G en
%F SM_1986_53_1_a4
A. M. Il'in; E. F. Lelikova. Asymptotics of the solutions of some higher order elliptic equations in conical domains. Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 89-117. http://geodesic.mathdoc.fr/item/SM_1986_53_1_a4/