A~criterion for rapid rational approximation in~$\mathbf C^n$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 271-281
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This article gives a necessary and sufficient condition for a function which is holomorphic in a neighborhood of zero to belong to the class $R^0$. This criterion, which is formulated in terms of the Taylor coefficients of the function, is then applied to give a description of the singular set of holomorphic functions of several variables which admit rapid rational approximation relative to Lebesgue measure (i.e., which belongs to the class $R^0$). In particular,
Theorem. If $\mathscr O(D)\subset R^0$, then the complement $\mathbf C^n\setminus\widehat D$ of the envelope of holomorphy $D$ is a pluripolar set. This theorem together with a well-known result of A. A. Gonchar gives a complete description of the domains for which $\mathscr O(D)\subset R^0$: this property is satisfied if and only if $\mathbf C^n\setminus\widehat D$ is a pluripolar set. Bibliography: 11 titles.
			
            
            
            
          
        
      @article{SM_1986_53_1_a13,
     author = {A. S. Sadullaev},
     title = {A~criterion for rapid rational approximation in~$\mathbf C^n$},
     journal = {Sbornik. Mathematics},
     pages = {271--281},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_53_1_a13/}
}
                      
                      
                    A. S. Sadullaev. A~criterion for rapid rational approximation in~$\mathbf C^n$. Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 271-281. http://geodesic.mathdoc.fr/item/SM_1986_53_1_a13/
