Asymptotic properties of polynomials orthogonal on a~system of contours, and periodic motions of Toda lattices
Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 233-260
Voir la notice de l'article provenant de la source Math-Net.Ru
An expression in the form of a Riemann theta-function is obtained for the asymptotic behavior of polynomials orthogonal on a system of contours. Properties of a limit-periodic discrete Sturm–Liouville operator and the dynamics of a periodic Toda lattice are considered as a consequence of the asymptotic formulas obtained.
Figures: 2.
Bibliography: 21 titles.
@article{SM_1986_53_1_a11,
author = {A. I. Aptekarev},
title = {Asymptotic properties of polynomials orthogonal on a~system of contours, and periodic motions of {Toda} lattices},
journal = {Sbornik. Mathematics},
pages = {233--260},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1986_53_1_a11/}
}
TY - JOUR AU - A. I. Aptekarev TI - Asymptotic properties of polynomials orthogonal on a~system of contours, and periodic motions of Toda lattices JO - Sbornik. Mathematics PY - 1986 SP - 233 EP - 260 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1986_53_1_a11/ LA - en ID - SM_1986_53_1_a11 ER -
A. I. Aptekarev. Asymptotic properties of polynomials orthogonal on a~system of contours, and periodic motions of Toda lattices. Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 233-260. http://geodesic.mathdoc.fr/item/SM_1986_53_1_a11/