Asymptotic properties of polynomials orthogonal on a~system of contours, and periodic motions of Toda lattices
Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 233-260

Voir la notice de l'article provenant de la source Math-Net.Ru

An expression in the form of a Riemann theta-function is obtained for the asymptotic behavior of polynomials orthogonal on a system of contours. Properties of a limit-periodic discrete Sturm–Liouville operator and the dynamics of a periodic Toda lattice are considered as a consequence of the asymptotic formulas obtained. Figures: 2. Bibliography: 21 titles.
@article{SM_1986_53_1_a11,
     author = {A. I. Aptekarev},
     title = {Asymptotic properties of polynomials orthogonal on a~system of contours, and periodic motions of {Toda} lattices},
     journal = {Sbornik. Mathematics},
     pages = {233--260},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_53_1_a11/}
}
TY  - JOUR
AU  - A. I. Aptekarev
TI  - Asymptotic properties of polynomials orthogonal on a~system of contours, and periodic motions of Toda lattices
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 233
EP  - 260
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1986_53_1_a11/
LA  - en
ID  - SM_1986_53_1_a11
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%T Asymptotic properties of polynomials orthogonal on a~system of contours, and periodic motions of Toda lattices
%J Sbornik. Mathematics
%D 1986
%P 233-260
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1986_53_1_a11/
%G en
%F SM_1986_53_1_a11
A. I. Aptekarev. Asymptotic properties of polynomials orthogonal on a~system of contours, and periodic motions of Toda lattices. Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 233-260. http://geodesic.mathdoc.fr/item/SM_1986_53_1_a11/