Nonhomogeneous boundary value problems for differential-operator equations of mixed type, and their application
Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 17-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ and $B$ be symmetric operators in a Hilbert space $H$, such that $B$ is positive and $A$ has an arbitrary spectrum. In this paper nonhomogeneous boundary value problems are considered for an equation of the form \begin{equation} Au'(t)+Bu(t)=f(t),\qquad t\in(0,T). \end{equation} An abstract theorem (of the Lax–Milgram type) is proved, which is then used to prove theorems on the weak and strong solvability of boundary value problems for equation (1) in the energy spaces defined by the operators $A$ and $B$, as well as a theorem on the traces of a strong solution. As an application, nonhomogeneous boundary value problems for partial differential equations are considered. Bibliography: 16 titles.
@article{SM_1986_53_1_a1,
     author = {N. V. Kislov},
     title = {Nonhomogeneous boundary value problems for differential-operator equations of mixed type, and their application},
     journal = {Sbornik. Mathematics},
     pages = {17--35},
     year = {1986},
     volume = {53},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1986_53_1_a1/}
}
TY  - JOUR
AU  - N. V. Kislov
TI  - Nonhomogeneous boundary value problems for differential-operator equations of mixed type, and their application
JO  - Sbornik. Mathematics
PY  - 1986
SP  - 17
EP  - 35
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1986_53_1_a1/
LA  - en
ID  - SM_1986_53_1_a1
ER  - 
%0 Journal Article
%A N. V. Kislov
%T Nonhomogeneous boundary value problems for differential-operator equations of mixed type, and their application
%J Sbornik. Mathematics
%D 1986
%P 17-35
%V 53
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1986_53_1_a1/
%G en
%F SM_1986_53_1_a1
N. V. Kislov. Nonhomogeneous boundary value problems for differential-operator equations of mixed type, and their application. Sbornik. Mathematics, Tome 53 (1986) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/SM_1986_53_1_a1/

[1] Baouendi M. S., Grisvard P., “Sur une equation d'evolution changent de type”, J. Func. Anal. Appl., 2:3 (1968), 352–367 | DOI | MR | Zbl

[2] Pomanko V. D., “Odnoznachnaya razreshimost granichnykh zadach dlya nekotorykh differentsialno-operatornykh uravnenii”, Differents. uravneniya, 13:2 (1977), 324–335 | MR

[3] Tersenov S. A., Pervaya kraevaya zadacha dlya uravneniya parabolicheskogo tipa s menyayuschimsya napravleniem vremeni, Nauka, Novosibirsk, 1978

[4] Yurchuk N. I., “O granichnykh zadachakh dlya uravnenii, soderzhaschikh v glavnoi chasti operatory vida $\frac{d^{2m+H}}{dt^{2m+H}}+A$”, Differents. uravneniya, 10:4 (1974), 759–762 | Zbl

[5] Kislov N. V., “Kraevye zadachi dlya uravneniya smeshannogo tipa v pryamougolnoi oblasti”, DAN SSSR, 255:1 (1980), 26–30 | MR | Zbl

[6] Kislov N. V., “Proektsionnaya teorema i ee prilozhenie k neodnorodnym granichnym zadacham”, DAN SSSR, 265:1 (1982), 31–34 | MR | Zbl

[7] Grisvard P., “Equations operationnelles abstraites et problemes aux limites”, Scola norm, super. Pisa, 21:3 (1967), 308–347 | MR

[8] Dubinskii Yu. A., “Smeshannye zadachi dlya nekotorykh klassov differentsialnykh uravnenii s chastnymi proizvodnymi”, Tr. MMO, 20 (1969), 203–238 | MR

[9] Dubinskii Yu. A., “Ob odnoi abstraktnoi teoreme i ee prilozheniyakh k kraevym zadacham dlya neklassicheskikh uravnenii”, Matem. sb., 79(121) (1969), 91–117 | MR | Zbl

[10] Dezin A. A., “Operatory s pervoi proizvodnoi po vremeni i nelokalnye granichnye usloviya”, Izv. AN SSSR. Ser. matem., 31:1 (1967), 61–68 | MR

[11] Dezin A. A., Obschie voprosy teorii granichnykh zadach, Nauka, M., 1980 | MR | Zbl

[12] Vishik M. I., “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Matem. sb., 29(71) (1951), 615–676 | Zbl

[13] Lax P. D., Milgram N., “Parabolic equations. Contributions to the theory of partial differential equations”, Ann. Math. Studies, 33 (1954), 167–190 | MR | Zbl

[14] Lions J.-L., Equations differentielles operationnelles et problemes aux limites, Springer-Verlag, Berlin, 1961 | MR | Zbl

[15] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[16] Lions Zh-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl