On commutative ring spectra of characteristic 2
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 471-479 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following theorem (a conjecture of Rourke) is proved: every commutative ring spectrum $E$ of characteristic 2 which has finite type is isomorphic to the spectrum of ordinary cohomology theory with coefficients in $\pi_*(E)$. Bibliography: 13 titles.
@article{SM_1985_52_2_a9,
     author = {A. V. Pajitnov and Yu. B. Rudyak},
     title = {On commutative ring spectra of characteristic~2},
     journal = {Sbornik. Mathematics},
     pages = {471--479},
     year = {1985},
     volume = {52},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a9/}
}
TY  - JOUR
AU  - A. V. Pajitnov
AU  - Yu. B. Rudyak
TI  - On commutative ring spectra of characteristic 2
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 471
EP  - 479
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_2_a9/
LA  - en
ID  - SM_1985_52_2_a9
ER  - 
%0 Journal Article
%A A. V. Pajitnov
%A Yu. B. Rudyak
%T On commutative ring spectra of characteristic 2
%J Sbornik. Mathematics
%D 1985
%P 471-479
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_52_2_a9/
%G en
%F SM_1985_52_2_a9
A. V. Pajitnov; Yu. B. Rudyak. On commutative ring spectra of characteristic 2. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 471-479. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a9/

[1] Adams J. F., Stable homotopy and generalized homology, Mathematics Lecture Notes, University of Chicago, Chicago, 1974 | MR

[2] Araki S., Toda H., “Multiplicative structures in $\bmod q$ cohomology theories”, Osaka J. Math., 2:1 (1965), 71–115 | MR | Zbl

[3] Baas N. A., Madsen I., “On the realization of certain modules over Steenrod algebra”, Math. Scand., 31:1 (1972), 220–224 | MR | Zbl

[4] Boardman J. M., “Graded Eilenberg–MacLane ring spectra”, Amer. J. Math., 102:5 (1980), 979–1010 | DOI | MR | Zbl

[5] Johnson D. C, Wilson W. S., “BP operations and Morava's Extraordinary $K$-theories”, Math. Z., 144:1 (1975), 55–75 | DOI | MR | Zbl

[6] May J. P., “Review of [8]”, Math. Reviews, 1975, no. 49, 3897

[7] Mironov O. K., “Umnozheniya v teoriyakh kobordizmov s osobennostyami i operatsii Stinroda–Dika”, Izv. AN SSSR. Seriya matem., 42:4 (1978), 789–806 | MR | Zbl

[8] Pazhitnov A. V., “Teoremy edinstvennosti dlya obobschennykh teorii kogomologii”, Izv. AN SSSR. Seriya matem., 47:3 (1983), 518–543 | MR | Zbl

[9] Pazhitnov A. V., Rudyak Yu. B., O gomotopicheskom tipe vysshikh $K$-teorii Moravy, Preprint, AN SSSR. Sibirskoe otdelenie institut matematiki, Novosibirsk, 1981

[10] Rourke C. P., “Representing homology classes”, Bull. Lond. Math. Soc., 5:3 (1973), 257–260 | DOI | MR | Zbl

[11] Stong R., Zametki po teorii kobordizmov, Mir, M., 1973 | MR | Zbl

[12] Stong R., “Orientability $\bmod2$”, J. Lond. Math. Soc., 14:2 (1976), 296–302 | DOI | MR | Zbl

[13] Switzer R. M., Algebraic topology – Homotopy and Homology, Springer, Berlin, 1975 | MR | Zbl