@article{SM_1985_52_2_a9,
author = {A. V. Pajitnov and Yu. B. Rudyak},
title = {On commutative ring spectra of characteristic~2},
journal = {Sbornik. Mathematics},
pages = {471--479},
year = {1985},
volume = {52},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a9/}
}
A. V. Pajitnov; Yu. B. Rudyak. On commutative ring spectra of characteristic 2. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 471-479. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a9/
[1] Adams J. F., Stable homotopy and generalized homology, Mathematics Lecture Notes, University of Chicago, Chicago, 1974 | MR
[2] Araki S., Toda H., “Multiplicative structures in $\bmod q$ cohomology theories”, Osaka J. Math., 2:1 (1965), 71–115 | MR | Zbl
[3] Baas N. A., Madsen I., “On the realization of certain modules over Steenrod algebra”, Math. Scand., 31:1 (1972), 220–224 | MR | Zbl
[4] Boardman J. M., “Graded Eilenberg–MacLane ring spectra”, Amer. J. Math., 102:5 (1980), 979–1010 | DOI | MR | Zbl
[5] Johnson D. C, Wilson W. S., “BP operations and Morava's Extraordinary $K$-theories”, Math. Z., 144:1 (1975), 55–75 | DOI | MR | Zbl
[6] May J. P., “Review of [8]”, Math. Reviews, 1975, no. 49, 3897
[7] Mironov O. K., “Umnozheniya v teoriyakh kobordizmov s osobennostyami i operatsii Stinroda–Dika”, Izv. AN SSSR. Seriya matem., 42:4 (1978), 789–806 | MR | Zbl
[8] Pazhitnov A. V., “Teoremy edinstvennosti dlya obobschennykh teorii kogomologii”, Izv. AN SSSR. Seriya matem., 47:3 (1983), 518–543 | MR | Zbl
[9] Pazhitnov A. V., Rudyak Yu. B., O gomotopicheskom tipe vysshikh $K$-teorii Moravy, Preprint, AN SSSR. Sibirskoe otdelenie institut matematiki, Novosibirsk, 1981
[10] Rourke C. P., “Representing homology classes”, Bull. Lond. Math. Soc., 5:3 (1973), 257–260 | DOI | MR | Zbl
[11] Stong R., Zametki po teorii kobordizmov, Mir, M., 1973 | MR | Zbl
[12] Stong R., “Orientability $\bmod2$”, J. Lond. Math. Soc., 14:2 (1976), 296–302 | DOI | MR | Zbl
[13] Switzer R. M., Algebraic topology – Homotopy and Homology, Springer, Berlin, 1975 | MR | Zbl