On the eigenfunctions of the monodromy operator of the Schrödinger operator with a time-periodic potential
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 423-438 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the eigenfunctions of the monodromy operator of the Schrödinger operator (with a potential periodic in time and rapidly decreasing in the space variables) decay in the space variables faster than any power. The spectrum of the monodromy operator is also investigated. It is proved that 1) the monodromy operator has no singular continuous spectrum; and 2) the total number of eigenfunctions of the monodromy operator (counting multiplicity) is finite. Bibliography: 19 titles.
@article{SM_1985_52_2_a7,
     author = {E. L. Korotyaev},
     title = {On the eigenfunctions of the monodromy operator of the {Schr\"odinger} operator with a~time-periodic potential},
     journal = {Sbornik. Mathematics},
     pages = {423--438},
     year = {1985},
     volume = {52},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a7/}
}
TY  - JOUR
AU  - E. L. Korotyaev
TI  - On the eigenfunctions of the monodromy operator of the Schrödinger operator with a time-periodic potential
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 423
EP  - 438
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_2_a7/
LA  - en
ID  - SM_1985_52_2_a7
ER  - 
%0 Journal Article
%A E. L. Korotyaev
%T On the eigenfunctions of the monodromy operator of the Schrödinger operator with a time-periodic potential
%J Sbornik. Mathematics
%D 1985
%P 423-438
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_52_2_a7/
%G en
%F SM_1985_52_2_a7
E. L. Korotyaev. On the eigenfunctions of the monodromy operator of the Schrödinger operator with a time-periodic potential. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 423-438. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a7/

[1] Zeldovich Ya. B., “Rasseyanie i izluchenie kvantovoi sistemoi v silnoi elektromagnitnoi volne”, UFN, 10 (1973), 139–151

[2] Schmidt G., “On scattering by time-dependent pertubation”, Ind. Univ. Math. J., 24 (1975), 925–935 | DOI | MR | Zbl

[3] Yajima K., “Scattering theory for Schrödinger equation with potential periodic in time”, J. Math. Soc. Japan., 29 (1977), 729–743 | DOI | MR | Zbl

[4] Howland J., “Scattering theory for hamiltonian periodic in time”, Ind. Univ. Math. J., 28 (1979), 471–494 | DOI | MR | Zbl

[5] Yafaev D. R., “Podprostranstva rasseyaniya i asimptoticheskaya polnota dlya nestatsionarnogo uravneniya Shredingera”, Matem. sb., 118(160) (1982), 262–279 | MR | Zbl

[6] Korotyaev E. L., “Zadacha rasseyaniya dlya medlenno ubyvayuschego potentsiala, periodicheski zavisyaschego ot vremeni”, Zap. nauchn. semin. LOMI, 84 (1979), 114–116 | MR | Zbl

[7] Korotyaev E. L., “O spektre operatora monodromii operatora Shredingera s periodicheskim po vremeni potentsialom”, Zapiski nauchn. sem. LOMI, 96 (1980), 101–104 | MR

[8] Howland J., “Stationary scattering theory for time-dependent hamiltonians”, Math. Ann., 207 (1974), 315–335 | DOI | MR | Zbl

[9] Yafaev D. R., “O narushenii unitarnosti pri rasseyanii na nestatsionarnom potentsiale”, DAN SSSR, 243:5 (1978), 1150–1153 | MR | Zbl

[10] Yafaev D. R., “Ob asimptoticheskom povedenii reshenii nestatsionarnogo uravneniya Shredingera”, Matem. sb., 111(153) (1980), 187–208 | MR | Zbl

[11] Agmon S., “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm Sup. Pisa. ser. IV, 2 (1975), 151–218 | MR | Zbl

[12] Enss V., “Asymptotic completeness for quantum mechanical potential scattering”, Comm. Math. Phys., 61 (1978), 285–291 | DOI | MR | Zbl

[13] Yafaev D. R., “O tochechnom spektre v kvantovomekhanicheskoi zadache mnogikh chastits”, Izv. AN SSSR. Seriya matem., 40 (1976), 908–948 | Zbl

[14] Faddeev L. D., Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Trudy MIAN, 69, 1963 | MR | Zbl

[15] Birman M. Sh., “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55(97) (1961), 125–174 | MR | Zbl

[16] Korotyaev E. L., “Teoriya rasseyaniya dlya trekh chastits s parnymi potentsialami, periodicheskimi po vremeni”, DAN SSSR, 225:4 (1980), 836–839 | MR

[17] Ginibre J., Moulin M., “Hibbert space approach to the quantum mechanical three-body problem”, Ann. Inst. H. Poincaré, 31 (1974), 97–145 | MR

[18] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR

[19] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 2, Mir, M., 1978 | MR