On estimates, unimprovable with respect to height, of some linear forms
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 407-421
Voir la notice de l'article provenant de la source Math-Net.Ru
Lower and upper bounds that differ from each other only by a constant factor are obtained for linear forms in values of the function
$$
\psi(z)=\sum_{\nu=0}^\infty\frac{z^\nu}{b^{(s+1)\nu}\nu!\,[\lambda_1+1,\nu]\dots[\lambda_s+1,\nu]},
$$
$[\lambda+1,\nu]=(\lambda+1)\dots(\lambda+\nu)$, $[\lambda+1,0]=1$ and its $s$ successive derivatives at the point $z=\frac1b$ under the condition that $a,b$ and $a\lambda_1,\dots,a\lambda_s$ are integers in some imaginary quadratic field.
Bibliography: 9 titles.
@article{SM_1985_52_2_a6,
author = {A. I. Galochkin},
title = {On estimates, unimprovable with respect to height, of some linear forms},
journal = {Sbornik. Mathematics},
pages = {407--421},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a6/}
}
A. I. Galochkin. On estimates, unimprovable with respect to height, of some linear forms. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 407-421. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a6/