On estimates, unimprovable with respect to height, of some linear forms
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 407-421

Voir la notice de l'article provenant de la source Math-Net.Ru

Lower and upper bounds that differ from each other only by a constant factor are obtained for linear forms in values of the function $$ \psi(z)=\sum_{\nu=0}^\infty\frac{z^\nu}{b^{(s+1)\nu}\nu!\,[\lambda_1+1,\nu]\dots[\lambda_s+1,\nu]}, $$ $[\lambda+1,\nu]=(\lambda+1)\dots(\lambda+\nu)$, $[\lambda+1,0]=1$ and its $s$ successive derivatives at the point $z=\frac1b$ under the condition that $a,b$ and $a\lambda_1,\dots,a\lambda_s$ are integers in some imaginary quadratic field. Bibliography: 9 titles.
@article{SM_1985_52_2_a6,
     author = {A. I. Galochkin},
     title = {On estimates, unimprovable with respect to height, of some linear forms},
     journal = {Sbornik. Mathematics},
     pages = {407--421},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a6/}
}
TY  - JOUR
AU  - A. I. Galochkin
TI  - On estimates, unimprovable with respect to height, of some linear forms
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 407
EP  - 421
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_2_a6/
LA  - en
ID  - SM_1985_52_2_a6
ER  - 
%0 Journal Article
%A A. I. Galochkin
%T On estimates, unimprovable with respect to height, of some linear forms
%J Sbornik. Mathematics
%D 1985
%P 407-421
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_2_a6/
%G en
%F SM_1985_52_2_a6
A. I. Galochkin. On estimates, unimprovable with respect to height, of some linear forms. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 407-421. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a6/