Approximation of subharmonic functions
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 387-406
Voir la notice de l'article provenant de la source Math-Net.Ru
Given an arbitrary subharmonic function of finite order on the plane, an entire function $f(z)$ is constructed which satisfies the asymptotic relation
$$
|u(z)-\ln|f(z)||\leqslant C\ln^2|z|,\qquad|z|\to\infty,
$$
outside a sufficiently small exceptional set $E$. Functions with a logarithmic estimate are constructed in some special cases.
Bibliography: 3 titles.
@article{SM_1985_52_2_a5,
author = {R. S. Yulmukhametov},
title = {Approximation of subharmonic functions},
journal = {Sbornik. Mathematics},
pages = {387--406},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a5/}
}
R. S. Yulmukhametov. Approximation of subharmonic functions. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 387-406. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a5/