Approximation of subharmonic functions
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 387-406

Voir la notice de l'article provenant de la source Math-Net.Ru

Given an arbitrary subharmonic function of finite order on the plane, an entire function $f(z)$ is constructed which satisfies the asymptotic relation $$ |u(z)-\ln|f(z)||\leqslant C\ln^2|z|,\qquad|z|\to\infty, $$ outside a sufficiently small exceptional set $E$. Functions with a logarithmic estimate are constructed in some special cases. Bibliography: 3 titles.
@article{SM_1985_52_2_a5,
     author = {R. S. Yulmukhametov},
     title = {Approximation of subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {387--406},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a5/}
}
TY  - JOUR
AU  - R. S. Yulmukhametov
TI  - Approximation of subharmonic functions
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 387
EP  - 406
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_2_a5/
LA  - en
ID  - SM_1985_52_2_a5
ER  - 
%0 Journal Article
%A R. S. Yulmukhametov
%T Approximation of subharmonic functions
%J Sbornik. Mathematics
%D 1985
%P 387-406
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_2_a5/
%G en
%F SM_1985_52_2_a5
R. S. Yulmukhametov. Approximation of subharmonic functions. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 387-406. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a5/