Estimates of the rate of convergence for certain minimization algorithms for strongly convex functions
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 331-346

Voir la notice de l'article provenant de la source Math-Net.Ru

The convergence of certain minimization algorithms for strongly convex functions is investigated. Namely, convergence with the rate of a geometric progression is proved for the method of coordinatewise descent and one variant of the method of feasible directions. An estimate of the ratio of the progression in dependence on the number of variables is given for the method of coordinatewise descent. Bibliography: 3 titles.
@article{SM_1985_52_2_a3,
     author = {P. A. Vitushkin},
     title = {Estimates of the rate of convergence for certain minimization algorithms for strongly convex functions},
     journal = {Sbornik. Mathematics},
     pages = {331--346},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a3/}
}
TY  - JOUR
AU  - P. A. Vitushkin
TI  - Estimates of the rate of convergence for certain minimization algorithms for strongly convex functions
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 331
EP  - 346
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_2_a3/
LA  - en
ID  - SM_1985_52_2_a3
ER  - 
%0 Journal Article
%A P. A. Vitushkin
%T Estimates of the rate of convergence for certain minimization algorithms for strongly convex functions
%J Sbornik. Mathematics
%D 1985
%P 331-346
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_2_a3/
%G en
%F SM_1985_52_2_a3
P. A. Vitushkin. Estimates of the rate of convergence for certain minimization algorithms for strongly convex functions. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 331-346. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a3/