Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 557-574 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $H_p$ be the Hardy space of functions $f$ that are analytic in the disk $|z|<1$ and let $J^\alpha f$ be the derivative of $f$ of order $\alpha$ in the sense of Weyl. It is shown, for example, that if $r$ is a rational function of degree $n\geqslant1$ with all its poles in the domain $|z|>1$, then $\|J^\alpha r\|_{H_\sigma}\leqslant cn^\alpha\|r\|_{H_p}$, where $p\in(1,\infty]$, $\alpha>0$, $\sigma=(\alpha+p^{-1})^{-1}$ and $c>0$ and depends only on $\alpha$ and $p$. Bibliography: 32 titles.
@article{SM_1985_52_2_a15,
     author = {A. A. Pekarskii},
     title = {Inequalities of {Bernstein} type for derivatives of rational functions, and inverse theorems of rational approximation},
     journal = {Sbornik. Mathematics},
     pages = {557--574},
     year = {1985},
     volume = {52},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/}
}
TY  - JOUR
AU  - A. A. Pekarskii
TI  - Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 557
EP  - 574
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/
LA  - en
ID  - SM_1985_52_2_a15
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%T Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation
%J Sbornik. Mathematics
%D 1985
%P 557-574
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/
%G en
%F SM_1985_52_2_a15
A. A. Pekarskii. Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 557-574. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/

[1] Zigmund L., Trigonometricheskie ryady, T. I, Mir, M., 1965.

[2] Flett T. M., “Lipschitz spaces of functions on the circle and the disc”, J. Math. Anal. and Appl., 39:1 (1972), 121–158 | DOI | MR

[3] Kudryavtsev L. D., Matematicheskii analiz, T. 2, Vysshaya shkola, M., 1981

[4] Zigmund A., Trigonometricheskie ryady, T. II, Mir, M., 1965 | MR

[5] Fefferman C, Stein E. M., “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl

[6] Gonchar A. A., “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Trudy Mezhdvnapodnogo kongressa matematikov, 1966, Mir, M., 1968, 329–356

[7] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU im. V. I. Lenina, Minsk, 1979 | MR

[8] Dolzhenko E. P., “Otsenki proizvodnykh ratsionalnykh funktsii”, Izv. AN SSSR. Seriya matem., 27:1 (1963), 9–28

[9] Sevost'yanov E. A., “Nekotorye otsenki proizvodnykh ratsionalnykh funktsii v integralnykh materialakh”, Matem. zametki, 13:4 (1973), 499–510

[10] Pekarskii A. A., “Otsenki vysshikh proizvodnykh ratsionalnykh funktsii i ikh prilozheniya”, Izv. AN BSSR. Seriya fiz.-matem., 1980, no. 5, 21–29 | MR

[11] Dolzhenko E. P., “O zavisimosti granichnykh svoistv analiticheskikh funktsii ot skorosti ee priblizheniya ratsionalnymi funktsiyami”, Matem. sb., 103(145) (1977), 131–142 | Zbl

[12] Danchenko V. I., “Ob odnoi integralnoi otsenke proizvodnoi ratsionalnoi funktsii”, Izv. AN SSSR. Seriya matem., 43 (1979), 277–293 | MR | Zbl

[13] Peller V. V., “Operatory Gankelya klassa $\sigma_p$ i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problema mazhoratsii operatorov)”, Matem. sb., 113 (155) (1980), 538–582 | MR

[14] Danchenko V. I., Otsenki variatsii ratsionalnykh funktsii na spryamlyaemykh krivykh, Rukopis dep. v VINITI, No 3515-80 Dep | Zbl

[15] Pekarskii A. A., “Otsenki proizvodnoi integrala tipa Koshi s meromorfnoi plotnostyu i ikh prilozheniya”, Matem. zametki, 31:3 (1982), 389–402 | MR | Zbl

[16] Peetre J., Sparr G., “Interpolation of normed Abelian groups”, Ann. Mat. Pura Appl., 1972, 217–262 | MR | Zbl

[17] Dolzhenko E. P., “Ratsionalnye approksimatsii i granichnye svoistva analiticheskikh funktsii”, Matem. sb., 69(111) (1966), 497–524 | Zbl

[18] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[19] Osvald P., “Priblizhenie splainami v metrikakh $L_p$, $0

1$”, Math. Nachr., 94 (1980), 69–96 | DOI | MR

[20] Dolzhenko E. P., “Ravnomernye approksimatsii ratsionalnymi funktsiyami (algebraicheskimi i trigonometricheskimi) i globalnye funktsionalnye svoistva”, DAN SSSR, 166:3, 526–529 | Zbl

[21] Sevastyanov E. A., “Kusochno-monotonnaya i ratsionalnaya approksimatsiya i ravnomernaya skhodimost ryadov Fure”, Anal. Math., 1 (1975), 141–164 | DOI

[22] Erudnyi Yu. A., “Ratsionalnaya approksimatsiya i teoremy vlozheniya”, DAN SSSR, 247:2 (1979), 269–272 | MR

[23] Storozhenko E. A., “O teoremakh tipa Dzheksona v $H^p$, $0

1$”, Izv. AN SSSR. Seriya matem., 44 (1980), 946–962 | MR | Zbl

[24] Dzydyak V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR

[25] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[26] Storozhenko E. A., “Ob odnoi zadache Khardi–Littlvuda”, Matem. sb., 119 (161) (1982), 563–583 | MR

[27] Peller V. V., Hankel operators of the Schatten–von Neuman class $\sigma_p$, $0

1$, LOMl Preprints, E-6-82, Leningrad, 1982 | MR

[28] Semmes S., Trace ideal criteria for Hankel operators and commutators, Preprint, 1982 | MR

[29] Pekarskii A. A., “Ratsionalnaya approksimatsiya i svoistva analiticheskikh funktsii”, V respublikanskaya konf. matem. Belorussii. (Tezisy dokladov.), Ch. 2, Grodno, 1980, 121–122

[30] Pekarskii A. A., “Ratsionalnaya approksimatsiya klassa $M_p$, $0

\infty$”, Mezhdunarodnaya konf. po kompl. analizu i prilozheniyam. (Tezisy dokladov.), Varna, 1981, 59

[31] Pekarskii A. A., “Ratsionalnye priblizheniya klassa $H_p$, $0

\infty$”, 1983, 1 (27), 9–12

[32] Pekarskii A. A., “Pryamye i obratnye teoremy ratsionalnoi approksimatsii v prostranstve Khardi”, Mezhdunarodnaya konf. po teor. pribl. funktsii (Tezisy dokladov.), Kiev, 1983, 146