Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 557-574
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H_p$ be the Hardy space of functions $f$ that are analytic in the disk $|z|1$ and let $J^\alpha f$ be the derivative of $f$ of order $\alpha$ in the sense of Weyl. It is shown, for example, that if $r$ is a rational function of degree $n\geqslant1$ with all its poles in the domain $|z|>1$, then $\|J^\alpha r\|_{H_\sigma}\leqslant cn^\alpha\|r\|_{H_p}$, where $p\in(1,\infty]$, $\alpha>0$, $\sigma=(\alpha+p^{-1})^{-1}$ and $c>0$ and depends only on $\alpha$ and $p$.
Bibliography: 32 titles.
@article{SM_1985_52_2_a15,
author = {A. A. Pekarskii},
title = {Inequalities of {Bernstein} type for derivatives of rational functions, and inverse theorems of rational approximation},
journal = {Sbornik. Mathematics},
pages = {557--574},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/}
}
TY - JOUR AU - A. A. Pekarskii TI - Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation JO - Sbornik. Mathematics PY - 1985 SP - 557 EP - 574 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/ LA - en ID - SM_1985_52_2_a15 ER -
%0 Journal Article %A A. A. Pekarskii %T Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation %J Sbornik. Mathematics %D 1985 %P 557-574 %V 52 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/ %G en %F SM_1985_52_2_a15
A. A. Pekarskii. Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 557-574. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/