Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 557-574

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H_p$ be the Hardy space of functions $f$ that are analytic in the disk $|z|1$ and let $J^\alpha f$ be the derivative of $f$ of order $\alpha$ in the sense of Weyl. It is shown, for example, that if $r$ is a rational function of degree $n\geqslant1$ with all its poles in the domain $|z|>1$, then $\|J^\alpha r\|_{H_\sigma}\leqslant cn^\alpha\|r\|_{H_p}$, where $p\in(1,\infty]$, $\alpha>0$, $\sigma=(\alpha+p^{-1})^{-1}$ and $c>0$ and depends only on $\alpha$ and $p$. Bibliography: 32 titles.
@article{SM_1985_52_2_a15,
     author = {A. A. Pekarskii},
     title = {Inequalities of {Bernstein} type for derivatives of rational functions, and inverse theorems of rational approximation},
     journal = {Sbornik. Mathematics},
     pages = {557--574},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/}
}
TY  - JOUR
AU  - A. A. Pekarskii
TI  - Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 557
EP  - 574
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/
LA  - en
ID  - SM_1985_52_2_a15
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%T Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation
%J Sbornik. Mathematics
%D 1985
%P 557-574
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/
%G en
%F SM_1985_52_2_a15
A. A. Pekarskii. Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 557-574. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a15/