On a~theorem of M.\,V.~Keldysh concerning pointwise convergence of a~sequence of polynomials
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 553-555
Voir la notice de l'article provenant de la source Math-Net.Ru
This article contains a proof of the following fact: for any bounded function $f(z)$, $|z|=1$, of the first Baire class such that $\int_{|z|=1}f(z)z^n\,dz=0$ for $n=0,1,\dots$, there exists a uniformly bounded sequence of polynomials on $|z|=1$ converging pointwise to $f(z)$.
Bibliography: 2 titles.
@article{SM_1985_52_2_a14,
author = {S. V. Kolesnikov},
title = {On a~theorem of {M.\,V.~Keldysh} concerning pointwise convergence of a~sequence of polynomials},
journal = {Sbornik. Mathematics},
pages = {553--555},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a14/}
}
TY - JOUR AU - S. V. Kolesnikov TI - On a~theorem of M.\,V.~Keldysh concerning pointwise convergence of a~sequence of polynomials JO - Sbornik. Mathematics PY - 1985 SP - 553 EP - 555 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_52_2_a14/ LA - en ID - SM_1985_52_2_a14 ER -
S. V. Kolesnikov. On a~theorem of M.\,V.~Keldysh concerning pointwise convergence of a~sequence of polynomials. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 553-555. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a14/