On a theorem of M. V. Keldysh concerning pointwise convergence of a sequence of polynomials
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 553-555
Cet article a éte moissonné depuis la source Math-Net.Ru
This article contains a proof of the following fact: for any bounded function $f(z)$, $|z|=1$, of the first Baire class such that $\int_{|z|=1}f(z)z^n\,dz=0$ for $n=0,1,\dots$, there exists a uniformly bounded sequence of polynomials on $|z|=1$ converging pointwise to $f(z)$. Bibliography: 2 titles.
@article{SM_1985_52_2_a14,
author = {S. V. Kolesnikov},
title = {On a~theorem of {M.} {V.~Keldysh} concerning pointwise convergence of a~sequence of polynomials},
journal = {Sbornik. Mathematics},
pages = {553--555},
year = {1985},
volume = {52},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a14/}
}
S. V. Kolesnikov. On a theorem of M. V. Keldysh concerning pointwise convergence of a sequence of polynomials. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 553-555. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a14/