On infinite $p$-groups with cyclic subgroups
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 481-490
Cet article a éte moissonné depuis la source Math-Net.Ru
For each odd prime $p$, continuum many nonisomorphic simple groups are constructed having isomorphic subgroup lattices and having the property that every proper subgroup is a cyclic $p$-group. Also constructed is a periodic group of infinite width where every proper subgroup is cyclic. The proofs are based on papers by A. Yu. Ol'shanskii. Figures: 2. Bibliography: 6 titles.
@article{SM_1985_52_2_a10,
author = {G. S. Deryabina},
title = {On infinite $p$-groups with cyclic subgroups},
journal = {Sbornik. Mathematics},
pages = {481--490},
year = {1985},
volume = {52},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a10/}
}
G. S. Deryabina. On infinite $p$-groups with cyclic subgroups. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 481-490. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a10/
[1] Olshanskii A. Yu., “Beskonechnye gruppy s tsiklicheskimi podgruppami”, DAN SSSR, 245:4 (1979), 785–787 | MR
[2] Olshanskii A. Yu., “Beskonechnaya prostaya neterova gruppa bez krucheniya”, Izv. AN SSSR. Seriya matem., 43 (1979), 1328–1393 | MR
[3] Olshanskii A. Yu., “Beskonechnaya gruppa s podgruppami prostykh poryadkov”, Izv. AN SSSR. Seriya matem., 44 (1980), 309–321 | MR
[4] Olshanskii A. Yu., “O gruppakh s tsiklicheskimi podgruppami”, Dokl. Bolg. AN, 32:9 (1979), 1165–1166 | MR
[5] Shmidt O. Yu., Izbrannye trudy. Matematika, Izd-vo AN SSSR, M., 1959. | MR
[6] Kourovskaya tetrad (nereshennye voprosy teorii grupp), Vosmoe izdanie, In-t. matem. SO AN SSSR, Novosibirsk, 1982