On infinite $p$-groups with cyclic subgroups
Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 481-490 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For each odd prime $p$, continuum many nonisomorphic simple groups are constructed having isomorphic subgroup lattices and having the property that every proper subgroup is a cyclic $p$-group. Also constructed is a periodic group of infinite width where every proper subgroup is cyclic. The proofs are based on papers by A. Yu. Ol'shanskii. Figures: 2. Bibliography: 6 titles.
@article{SM_1985_52_2_a10,
     author = {G. S. Deryabina},
     title = {On infinite $p$-groups with cyclic subgroups},
     journal = {Sbornik. Mathematics},
     pages = {481--490},
     year = {1985},
     volume = {52},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_2_a10/}
}
TY  - JOUR
AU  - G. S. Deryabina
TI  - On infinite $p$-groups with cyclic subgroups
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 481
EP  - 490
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_2_a10/
LA  - en
ID  - SM_1985_52_2_a10
ER  - 
%0 Journal Article
%A G. S. Deryabina
%T On infinite $p$-groups with cyclic subgroups
%J Sbornik. Mathematics
%D 1985
%P 481-490
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1985_52_2_a10/
%G en
%F SM_1985_52_2_a10
G. S. Deryabina. On infinite $p$-groups with cyclic subgroups. Sbornik. Mathematics, Tome 52 (1985) no. 2, pp. 481-490. http://geodesic.mathdoc.fr/item/SM_1985_52_2_a10/

[1] Olshanskii A. Yu., “Beskonechnye gruppy s tsiklicheskimi podgruppami”, DAN SSSR, 245:4 (1979), 785–787 | MR

[2] Olshanskii A. Yu., “Beskonechnaya prostaya neterova gruppa bez krucheniya”, Izv. AN SSSR. Seriya matem., 43 (1979), 1328–1393 | MR

[3] Olshanskii A. Yu., “Beskonechnaya gruppa s podgruppami prostykh poryadkov”, Izv. AN SSSR. Seriya matem., 44 (1980), 309–321 | MR

[4] Olshanskii A. Yu., “O gruppakh s tsiklicheskimi podgruppami”, Dokl. Bolg. AN, 32:9 (1979), 1165–1166 | MR

[5] Shmidt O. Yu., Izbrannye trudy. Matematika, Izd-vo AN SSSR, M., 1959. | MR

[6] Kourovskaya tetrad (nereshennye voprosy teorii grupp), Vosmoe izdanie, In-t. matem. SO AN SSSR, Novosibirsk, 1982