On approximate self-similar solutions of a~class of quasilinear heat equations with a~source
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 155-180

Voir la notice de l'article provenant de la source Math-Net.Ru

Quasilinear parabolic equations of the form $$ \frac{\partial u}{\partial t}=\nabla(k(u)\nabla u)+Q(u),\qquad\nabla(\,\cdot\,) =\operatorname{grad}_x(\,\cdot\,),\quad k\geqslant0, $$ are considered; here $k(u)$ and $Q(u)$ are sufficiently smooth given functions (respectively, the coefficient of thermal conductivity and the power of heat sources depending on the temperature $u=u(t,x)\geqslant0$). A family of coefficients $\{k\}$ and corresponding functions $\{Q_k\}$ is distinguished for which the properties of the solution of the boundary value problem for the equation in question are described by invariant solutions $v_A(t,x)$ of a first-order equation of Hamilton–Jacobi type $$ \frac{\partial v}{\partial t}=\frac{k(v)}{v+1}(\nabla v)^2 +G(t)\nabla\mathbf{vx}+H(t)Q_k(v). $$ The function $u_A$ is an approximate self-similar solution of the original equation. Tables: 1. Figures: 1. Bibliography: 70 titles.
@article{SM_1985_52_1_a9,
     author = {V. A. Galaktionov and S. P. Kurdyumov and A. A. Samarskii},
     title = {On approximate self-similar solutions of a~class of quasilinear heat equations with a~source},
     journal = {Sbornik. Mathematics},
     pages = {155--180},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a9/}
}
TY  - JOUR
AU  - V. A. Galaktionov
AU  - S. P. Kurdyumov
AU  - A. A. Samarskii
TI  - On approximate self-similar solutions of a~class of quasilinear heat equations with a~source
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 155
EP  - 180
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a9/
LA  - en
ID  - SM_1985_52_1_a9
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%A S. P. Kurdyumov
%A A. A. Samarskii
%T On approximate self-similar solutions of a~class of quasilinear heat equations with a~source
%J Sbornik. Mathematics
%D 1985
%P 155-180
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a9/
%G en
%F SM_1985_52_1_a9
V. A. Galaktionov; S. P. Kurdyumov; A. A. Samarskii. On approximate self-similar solutions of a~class of quasilinear heat equations with a~source. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 155-180. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a9/