On approximate self-similar solutions of a~class of quasilinear heat equations with a~source
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 155-180
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Quasilinear parabolic equations of the form 
$$
\frac{\partial u}{\partial t}=\nabla(k(u)\nabla u)+Q(u),\qquad\nabla(\,\cdot\,)
=\operatorname{grad}_x(\,\cdot\,),\quad k\geqslant0,
$$
are considered; here $k(u)$ and $Q(u)$ are sufficiently smooth given functions (respectively, the coefficient of thermal conductivity and the power of heat sources depending on the temperature $u=u(t,x)\geqslant0$). A family of coefficients $\{k\}$ and corresponding functions $\{Q_k\}$ is distinguished for which the properties of the solution of the boundary value problem for the equation in question are described by invariant solutions $v_A(t,x)$ of a first-order equation of Hamilton–Jacobi type 
$$
\frac{\partial v}{\partial t}=\frac{k(v)}{v+1}(\nabla v)^2
+G(t)\nabla\mathbf{vx}+H(t)Q_k(v).
$$
The function $u_A$ is an approximate self-similar solution of the original equation.
Tables: 1.
Figures: 1.
Bibliography: 70 titles.
			
            
            
            
          
        
      @article{SM_1985_52_1_a9,
     author = {V. A. Galaktionov and S. P. Kurdyumov and A. A. Samarskii},
     title = {On approximate self-similar solutions of a~class of quasilinear heat equations with a~source},
     journal = {Sbornik. Mathematics},
     pages = {155--180},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a9/}
}
                      
                      
                    TY - JOUR AU - V. A. Galaktionov AU - S. P. Kurdyumov AU - A. A. Samarskii TI - On approximate self-similar solutions of a~class of quasilinear heat equations with a~source JO - Sbornik. Mathematics PY - 1985 SP - 155 EP - 180 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a9/ LA - en ID - SM_1985_52_1_a9 ER -
%0 Journal Article %A V. A. Galaktionov %A S. P. Kurdyumov %A A. A. Samarskii %T On approximate self-similar solutions of a~class of quasilinear heat equations with a~source %J Sbornik. Mathematics %D 1985 %P 155-180 %V 52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a9/ %G en %F SM_1985_52_1_a9
V. A. Galaktionov; S. P. Kurdyumov; A. A. Samarskii. On approximate self-similar solutions of a~class of quasilinear heat equations with a~source. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 155-180. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a9/
