Critical points of the multidimensional Dirichlet functional
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 141-153

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the existence of local minima is considered for the Dirichlet (energy) functional on spaces of mappings of one Riemannian manifold into another. In particular, it is shown that if the identity mapping of a compact irreducible homogeneous space onto itself has positive index, then any nonconstant harmonic mapping of an arbitrary compact orientable Riemannian manifold into such a space also has positive index. Bibliography: 15 titles.
@article{SM_1985_52_1_a8,
     author = {A. V. Tyrin},
     title = {Critical points of the multidimensional {Dirichlet} functional},
     journal = {Sbornik. Mathematics},
     pages = {141--153},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a8/}
}
TY  - JOUR
AU  - A. V. Tyrin
TI  - Critical points of the multidimensional Dirichlet functional
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 141
EP  - 153
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a8/
LA  - en
ID  - SM_1985_52_1_a8
ER  - 
%0 Journal Article
%A A. V. Tyrin
%T Critical points of the multidimensional Dirichlet functional
%J Sbornik. Mathematics
%D 1985
%P 141-153
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a8/
%G en
%F SM_1985_52_1_a8
A. V. Tyrin. Critical points of the multidimensional Dirichlet functional. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 141-153. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a8/