Critical points of the multidimensional Dirichlet functional
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 141-153
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The question of the existence of local minima is considered for the Dirichlet (energy) functional on spaces of mappings of one Riemannian manifold into another. In particular, it is shown that if the identity mapping of a compact irreducible homogeneous space onto itself has positive index, then any nonconstant harmonic mapping of an arbitrary compact orientable Riemannian manifold into such a space also has positive index.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1985_52_1_a8,
     author = {A. V. Tyrin},
     title = {Critical points of the multidimensional {Dirichlet} functional},
     journal = {Sbornik. Mathematics},
     pages = {141--153},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a8/}
}
                      
                      
                    A. V. Tyrin. Critical points of the multidimensional Dirichlet functional. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 141-153. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a8/
