Maximal codimension of the sets of singular elements of representations of Lie algebras
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 135-140
Cet article a éte moissonné depuis la source Math-Net.Ru
The maximal codimension of the sets of singular operators is computed for representations of solvable Lie algebras over the field of real numbers and for representations of certain series of real forms of semisimple Lie algebras. Bibliography: 5 titles.
@article{SM_1985_52_1_a7,
author = {V. V. Prasolov},
title = {Maximal codimension of the sets of singular elements of representations of {Lie~algebras}},
journal = {Sbornik. Mathematics},
pages = {135--140},
year = {1985},
volume = {52},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a7/}
}
V. V. Prasolov. Maximal codimension of the sets of singular elements of representations of Lie algebras. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 135-140. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a7/
[1] Adame Dzh., “Vektornye polya na sferakh”, Matematika, 7:6 (1963), 48–79
[2] Adams J. F., Lax P. D., Phillips R. S., “On matrices whose real linear combinations are noiisingular”, Proc. Amer. Math. Soc., 14:2 (1965), 318–322 | DOI | MR
[3] Mischenko A. S, Fomenko A. T., “Integrirovanie gamiltonovykh sistem s nekommutativnymi simmetriyami”, Trudy seminara po vektornomu i tenzornomu analizu, vypusk XX, MGU, 1981, 5–54
[4] Kostant B., “Lie group representations on polinomial rings”, Amer. J. Math., 85 (1963), 327–404 | DOI | MR | Zbl
[5] Prasolov V. V., “Lineinye podprostranstva v polnoi lineinoi gruppe”, Geometricheskie metody v zadachakh algebry i analiza, vyp. 2, YarGU, 1980, 3–6 | MR | Zbl