On a~variational problem of Chebotarev in the theory of capacity of plane sets and covering theorems for univalent conformal mappings
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 115-133

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to extremal problems in the theory of univalent conformal mappings, related to the moduli of families of curves. In § 1, the problem of finding the minimum capacity in the family of all continua on $\mathbf C$ which contain a fixed quadruple of points which are symmetrically placed with respect to the real axis is solved. Let $R(B,c)$ be the conformal radius of the simply connected region $B$ with respect to the point $c\in B$. In § 2, the maximum of the product $R(B_1,0)R^{-1}(B_2,\infty)$ in the family $\mathscr B(0,\infty;a)$ of all pairs of nonoverlapping simply connected regions $\{B_1,B_2\}$, $0\in B_1$, $\infty\in B_2$, on $\mathbf C\setminus\{a,\overline a,1/a,1/\overline a\}$ is found. Several covering theorems in classes of univalent functions are established as consequences in § 3. Bibliography: 7 titles.
@article{SM_1985_52_1_a6,
     author = {S. I. Fedorov},
     title = {On a~variational problem of {Chebotarev} in the theory of capacity of plane sets and covering theorems for univalent conformal mappings},
     journal = {Sbornik. Mathematics},
     pages = {115--133},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a6/}
}
TY  - JOUR
AU  - S. I. Fedorov
TI  - On a~variational problem of Chebotarev in the theory of capacity of plane sets and covering theorems for univalent conformal mappings
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 115
EP  - 133
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a6/
LA  - en
ID  - SM_1985_52_1_a6
ER  - 
%0 Journal Article
%A S. I. Fedorov
%T On a~variational problem of Chebotarev in the theory of capacity of plane sets and covering theorems for univalent conformal mappings
%J Sbornik. Mathematics
%D 1985
%P 115-133
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a6/
%G en
%F SM_1985_52_1_a6
S. I. Fedorov. On a~variational problem of Chebotarev in the theory of capacity of plane sets and covering theorems for univalent conformal mappings. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 115-133. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a6/