Long wave asymptotics of asolution of a hyperbolic system of equations
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 91-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem is considered for a hyperbolic system of equations with a small parameter $\varepsilon$: \begin{gather*} [\partial_t+\lambda_i(\xi,\tau)\partial_x]u_i=\varepsilon[A_i(U,\xi,\tau)\partial_xU+b_i(U,\xi,\tau)],\qquad t>0; \\ u_i(x,t,\varepsilon)|_{t=0}=\varphi_i(x,\xi),\quad x\in\mathbf R^1;\quad i=1,\dots,m;\quad\xi=\varepsilon x,\quad\tau=\varepsilon t. \end{gather*} It is assumed that the initial vector $\Phi(x,\xi)=(\varphi_1,\dots,\varphi_m)$ has asymptotics $$ \Phi(x,\xi)=\Phi^\pm(\xi)+O(x^{-N}),\qquad x\to\pm\infty,\quad\forall\,N,\quad\forall\,|\xi|\leqslant M_0. $$ A`complete asymptotic expansion of the solution $U(x,t,\varepsilon)$ as $\varepsilon\to0$ which is uniform in a large domain $0\leqslant|x|$, $t\leqslant O(\varepsilon^{-1})$ is constructed by the method of matching. Several subdomains are distinguished in which the expansion can be represented in the form of various series. The following pairs of variables are characteristic in these subdomains: $x$, $t$; $\xi$, $\tau$; $\sigma_\alpha$, $\tau$, $\alpha=1,\dots,m$; here $\sigma_\alpha=\varepsilon^{-1}\omega_\alpha(\xi,\tau)$, $\partial_\tau\omega_\alpha+\lambda_\alpha\partial_\xi\omega_\alpha=0$, and $\omega_\alpha(\xi,0)=\xi$. Bibliography: 20 titles.
@article{SM_1985_52_1_a5,
     author = {L. A. Kalyakin},
     title = {Long wave asymptotics of asolution of a~hyperbolic system of equations},
     journal = {Sbornik. Mathematics},
     pages = {91--114},
     year = {1985},
     volume = {52},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a5/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Long wave asymptotics of asolution of a hyperbolic system of equations
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 91
EP  - 114
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a5/
LA  - en
ID  - SM_1985_52_1_a5
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Long wave asymptotics of asolution of a hyperbolic system of equations
%J Sbornik. Mathematics
%D 1985
%P 91-114
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a5/
%G en
%F SM_1985_52_1_a5
L. A. Kalyakin. Long wave asymptotics of asolution of a hyperbolic system of equations. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 91-114. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a5/

[1] Uizem Dzh., Lineinye i nelineinye volny, Mir, M, 1977, 622 pp.

[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR | Zbl

[3] Rabinovich M. I., “Ob asimptoticheskom metode v teorii nelineinykh kolebanii raspredelennykh sistem”, DAN SSSR, 191:6 (1970), 1253–1256 | MR

[4] Rabinovich M. I., Rozenblyum A. A., “Ob asimptoticheskikh metodakh resheniya nelineinykh uravnenii v chastnykh proizvodnykh”, PMM, 36 (1972), 330–343 | MR | Zbl

[5] Shtaras A. L., “Asimptoticheskoe integrirovanie slabonelineinykh uravnenii s chastnymi proizvodnymi”, DAN SSSR, 237:3 (1977), 525–528 | MR | Zbl

[6] Taniuti T., “Reductive perturbation method and far fields of wave equations”, Suppl. progress theor. phys., 55 (1974), 1–35 | DOI

[7] Oikava M., Yajima N., “Generalization of the reductive perturbation method to multiwave systems”, Suppl. progress theor. phys., 55 (1974), 36–51 | DOI

[8] Kalyakin L. A., “Asimptoticheskii raspad na prostye volny resheniya vozmuschennoi giberbolicheskoi sistemy uravnenii”, UMN, 37:4 (1982), 113–114

[9] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967, 310 pp.

[10] Ilin A. M., Lelikova E. F., “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravneniya $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ v pryamougolnike”, Matem. sb., 96 (138) (1975), 568–583 | MR | Zbl

[11] Kalyakin L. A., “Metod sraschivaniya asimptoticheskikh razlozhenii v nekotorykh lineinykh zadachakh MGD s singulyarnym vozmuscheniem”, Differentsialnye uravneniya s malym parametrom, UNTs AN SSSR, Sverdlovsk, 1980, 16–43 | MR

[12] Nesterova T. N., “Ob asimptotike resheniya uravneniya Byurgersa v okrestnosti sliyaniya dvukh linii razryva”, Differentsialnye uravneniya s malym parametrom, UNTs AN SSSR, Sverdlovsk, 1980, 66–86 | MR

[13] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR

[14] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 588 pp.

[15] Babich V. M., Buldyrev V. S., “Iskusstvo asimptotiki”, Vestn. LGU, 1977, no. 13, vyp. 3,, 5–12 | Zbl

[16] Ostrovskii L. A., “Priblizhennye metody v teorii nelineinykh voln”, Izv. VUZov., Radiofizika, 17:4 (1974), 454–476

[17] Mitropolskii Yu. A., Moseenkov B. I., Asimptoticheskie resheniya uravnenii v chastnykh proizvodnykh, Vischa shkola, Kiev, 1976, 589 pp.

[18] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[19] Mitropolskii Yu. A., Metod usredneniya v nelineinoi mekhanike, Naukova dumka, Kiev, 1971, 440 pp. | MR

[20] Babich V. M., Kirpichnikova N. Ya., Metod pogranichnogo sloya v zadachakh difraktsii, LGU, 1974, 124 pp. | MR