Long wave asymptotics of asolution of a~hyperbolic system of equations
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 91-114

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem is considered for a hyperbolic system of equations with a small parameter $\varepsilon$: \begin{gather*} [\partial_t+\lambda_i(\xi,\tau)\partial_x]u_i=\varepsilon[A_i(U,\xi,\tau)\partial_xU+b_i(U,\xi,\tau)],\qquad t>0; \\ u_i(x,t,\varepsilon)|_{t=0}=\varphi_i(x,\xi),\quad x\in\mathbf R^1;\quad i=1,\dots,m;\quad\xi=\varepsilon x,\quad\tau=\varepsilon t. \end{gather*} It is assumed that the initial vector $\Phi(x,\xi)=(\varphi_1,\dots,\varphi_m)$ has asymptotics $$ \Phi(x,\xi)=\Phi^\pm(\xi)+O(x^{-N}),\qquad x\to\pm\infty,\quad\forall\,N,\quad\forall\,|\xi|\leqslant M_0. $$ A`complete asymptotic expansion of the solution $U(x,t,\varepsilon)$ as $\varepsilon\to0$ which is uniform in a large domain $0\leqslant|x|$, $t\leqslant O(\varepsilon^{-1})$ is constructed by the method of matching. Several subdomains are distinguished in which the expansion can be represented in the form of various series. The following pairs of variables are characteristic in these subdomains: $x$, $t$; $\xi$, $\tau$; $\sigma_\alpha$, $\tau$, $\alpha=1,\dots,m$; here $\sigma_\alpha=\varepsilon^{-1}\omega_\alpha(\xi,\tau)$, $\partial_\tau\omega_\alpha+\lambda_\alpha\partial_\xi\omega_\alpha=0$, and $\omega_\alpha(\xi,0)=\xi$. Bibliography: 20 titles.
@article{SM_1985_52_1_a5,
     author = {L. A. Kalyakin},
     title = {Long wave asymptotics of asolution of a~hyperbolic system of equations},
     journal = {Sbornik. Mathematics},
     pages = {91--114},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a5/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Long wave asymptotics of asolution of a~hyperbolic system of equations
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 91
EP  - 114
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a5/
LA  - en
ID  - SM_1985_52_1_a5
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Long wave asymptotics of asolution of a~hyperbolic system of equations
%J Sbornik. Mathematics
%D 1985
%P 91-114
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a5/
%G en
%F SM_1985_52_1_a5
L. A. Kalyakin. Long wave asymptotics of asolution of a~hyperbolic system of equations. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 91-114. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a5/