Long wave asymptotics of asolution of a~hyperbolic system of equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 91-114
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Cauchy problem is considered for a hyperbolic system of equations with a small parameter $\varepsilon$:
\begin{gather*}
[\partial_t+\lambda_i(\xi,\tau)\partial_x]u_i=\varepsilon[A_i(U,\xi,\tau)\partial_xU+b_i(U,\xi,\tau)],\qquad t>0;
\\
u_i(x,t,\varepsilon)|_{t=0}=\varphi_i(x,\xi),\quad x\in\mathbf R^1;\quad i=1,\dots,m;\quad\xi=\varepsilon x,\quad\tau=\varepsilon t.
\end{gather*} 
It is assumed that the initial vector $\Phi(x,\xi)=(\varphi_1,\dots,\varphi_m)$ has asymptotics 
$$
\Phi(x,\xi)=\Phi^\pm(\xi)+O(x^{-N}),\qquad x\to\pm\infty,\quad\forall\,N,\quad\forall\,|\xi|\leqslant M_0.
$$
A`complete asymptotic expansion of the solution $U(x,t,\varepsilon)$ as $\varepsilon\to0$ which is uniform in a large domain $0\leqslant|x|$, $t\leqslant O(\varepsilon^{-1})$ is constructed by the method of matching. Several subdomains are distinguished in which the expansion can be represented in the form of various series. The following pairs of variables are characteristic in these subdomains: $x$, $t$; $\xi$, $\tau$; $\sigma_\alpha$, $\tau$, $\alpha=1,\dots,m$; here $\sigma_\alpha=\varepsilon^{-1}\omega_\alpha(\xi,\tau)$, $\partial_\tau\omega_\alpha+\lambda_\alpha\partial_\xi\omega_\alpha=0$, and $\omega_\alpha(\xi,0)=\xi$.
Bibliography: 20 titles.
			
            
            
            
          
        
      @article{SM_1985_52_1_a5,
     author = {L. A. Kalyakin},
     title = {Long wave asymptotics of asolution of a~hyperbolic system of equations},
     journal = {Sbornik. Mathematics},
     pages = {91--114},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a5/}
}
                      
                      
                    L. A. Kalyakin. Long wave asymptotics of asolution of a~hyperbolic system of equations. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 91-114. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a5/
