The Cauchy problem for the Euler–Poisson–Darboux equation in a symmetric space
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 41-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical solvability of the singular Cauchy problem for the Euler–Poisson–Darboux equation in a homogeneous, globally symmetric space of rank 1 is studied. Starting out from the mean value theorem for spaces of the indicated type, the Darboux and the Euler–Poisson–Darboux equations are introduced. For the Cauchy problem with specific singularity conditions, analogs of Kirchhoff's formulas are derived, i.e. a representation of the solution in terms of spherical means of the initial data is given. The representations so obtained permitted the establishment of necessary and sufficient conditions for the problems under consideration to satisfy Huygens' principle. In particular, Kirchhoff's formulas for the wave equation have been obtained. Bibliography: 27 titles.
@article{SM_1985_52_1_a2,
     author = {I. A. Kipriyanov and L. A. Ivanov},
     title = {The {Cauchy} problem for the {Euler{\textendash}Poisson{\textendash}Darboux} equation in a~symmetric space},
     journal = {Sbornik. Mathematics},
     pages = {41--51},
     year = {1985},
     volume = {52},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a2/}
}
TY  - JOUR
AU  - I. A. Kipriyanov
AU  - L. A. Ivanov
TI  - The Cauchy problem for the Euler–Poisson–Darboux equation in a symmetric space
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 41
EP  - 51
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a2/
LA  - en
ID  - SM_1985_52_1_a2
ER  - 
%0 Journal Article
%A I. A. Kipriyanov
%A L. A. Ivanov
%T The Cauchy problem for the Euler–Poisson–Darboux equation in a symmetric space
%J Sbornik. Mathematics
%D 1985
%P 41-51
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a2/
%G en
%F SM_1985_52_1_a2
I. A. Kipriyanov; L. A. Ivanov. The Cauchy problem for the Euler–Poisson–Darboux equation in a symmetric space. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 41-51. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a2/

[1] Weinstein A., “On the wave equation and the equation of Euler–Poisson”, Rroc. Fifth Symp. Appl. Math., AMS, 1954, 137–147 | MR

[2] Kurant R., Gilbert D., Metody matematicheskoi fiziki, t. 2, GITTL, M.-L., 1951

[3] Olevskii M. N., “Nekotorye teoremy o srednem v prostranstvakh postoyannoi krivizny”, DAN SSSR, 45:3 (1944), 103–106

[4] Olevskii M. N., “Reshenie zadachi Koshi dlya volnovogo uravneniya v prostranstve postoyannoi krivizny”, DAN SSSR, 46:1 (1945), 3–7

[5] Olevskii M. N., “O svyazyakh mezhdu resheniyami obobschennogo volnovogo uravneniya i obobschennogo uravneniya teploprovodnosti”, DAN SSSR, 101:1 (1955), 21–24 | MR | Zbl

[6] Berezin F. A., Gelfand I. M., “Neskolko zamechanii k teorii sfericheskikh funktsii na simmetrichnykh rimanovykh mnogoobraziyakh”, Trudy MMO, 5 (1956), 311–351 | MR

[7] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[8] Carrol R. W., Showalter R. E., Singular and degenerate Cauchy problem, Acad. Press., New York, 1976 | MR

[9] Olevskii M. N., “Zadacha Koshi dlya odnogo klassa lineinykh faktorizovannykh differentsialno-operatornykh uravnenii”, DAN SSSR, 169:2 (1966), 280–283 | MR | Zbl

[10] Kipriyanov I. A., Ivanov L. A., “Metod Adamara dlya odnogo klassa giperbolicheskikh uravnenii”, DAN SSSR, 252:5 (1980), 1045–1048 | MR | Zbl

[11] Kipriyanov I. A., Ivanov L. A. Metod Zh., “Adamara dlya nekotorykh klassov giperbolicheskikh uravnenii s peremennymi koeffitsientami”, Sib. matem. zh., 23:3 (1982), 91–100 | MR | Zbl

[12] Ivanov L. A., “Zadacha Koshi dlya odnogo klassa singulyarnykh uravnenii”, Diff. uravneniya, 18:6 (1982), 1020–1028 | MR | Zbl

[13] Kipriyanov I. A., Ivanov L. A., “Fundamentalnye resheniya odnorodnykh $B$-giperbolicheskikh uravnenii”, Sib. matem. zh., 21:4 (1980), 95–102 | MR | Zbl

[14] Kipriyanov I. A., Ivanov L. A., “Poluchenie fundamentalnykh reshenii dlya odnorodnykh uravnenii s osobennostyami”, Trudy sem. S. L. Soboleva, 1983, no. 1, 55–77 | MR | Zbl

[15] Kipriyanov I. A., Ivanov L. A., “O lakunakh dlya odnogo klassa uravnenii s osobennostyami”, Matem. sb., 110 (152) (1979), 235–250 | MR | Zbl

[16] Ivanov L. A., “O printsipe Gyuigensa dlya uravnenii, raspadayuschikhsya na mnozhiteli”, DAN SSSR, 245:4 (1979), 829–832 | MR | Zbl

[17] Berezin F. A., “Operatory Laplasa na poluprostykh gruppakh Li”, Trudy MMO, 6 (1957), 371–463 | MR | Zbl

[18] Stellmacher K.-L., “Ein Beispiel einer Huygenssehen Differentialgleihung”, Gött. Nachr. B, 4 (1953), 93–96

[19] Lake P. D., Fillips R. S., Teoriya rasseyaniya dlya avtomorfnykh funktsii, Mir, M., 1979

[20] Lax P. D., Phillips R. S., “An example of Huygens principle”, Comm. pure Appl. Math., 31:4 (1978), 415–421 | DOI | MR | Zbl

[21] Ivanov L. A., “Uravneniya Eilera–Puassona–Darbu na sfere i ikh gyuigensovost”, Korrektnye kraevye zadachi dlya neklassicheskikh uravnenii, Novosibirsk, 1980, 69–71 | Zbl

[22] Helgason S., The Radon Transform, Birkhaüser, Stuttgart, 1980 | MR | Zbl

[23] Kipriyanov I. A., Ivanov L. A., “Uravneniya Eilera–Puassona–Darbu v rimanovom prostranstve”, UMN, 36:4 (1981), 232–233 | MR

[24] Kipriyanov I. A., Ivanov L. A., “Uravneniya Eilera–Puassona–Darbu v rimanovom prostranstve”, DAN SSSR, 260:4 (1981), 790–794 | MR | Zbl

[25] Ivanov L. A., “O formulakh Kirkhgofa v simmetricheskikh prostranstvakh ranga 1”, DAN SSSR, 260:4 (1981), 783–785 | MR | Zbl

[26] Kipriyanov I. A., Ivanov L. A., “Uravneniya, opisyvayuschie rasprostranenie voln v rimanovykh prostranstvakh”, UMN, 38:5 (1983), 146

[27] Frendental H., De Vries H., Linear Lie Groups, Acad. Press., New York, 1969 | MR