Codes and homology
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 275-282
Cet article a éte moissonné depuis la source Math-Net.Ru
The overlapping of code words has as a natural means for its study the homology groups of suitable algebraic structures. Homology groups, as envisioned by Poincaré, were meant to characterize the linking of simplices in a polyhedron. In this paper we shall use the homology groups of monoids to study code word overlapping. Bibliography: 6 titles.
@article{SM_1985_52_1_a15,
author = {V. E. Govorov},
title = {Codes and homology},
journal = {Sbornik. Mathematics},
pages = {275--282},
year = {1985},
volume = {52},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a15/}
}
V. E. Govorov. Codes and homology. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 275-282. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a15/
[1] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960
[2] Govorov V. E., “Razmernost i kratnost graduirovannykh algebr”, Sib. matem. zh., 14:6 (1973), 1200–1206. | MR | Zbl
[3] Govorov V. E., “O graduirovannykh algebrakh”, Matem. zametki, 12:2 (1972), 197–204 | MR | Zbl
[4] Kholl. M., Kombinatorika, Mir, M., 1970 | MR
[5] Markov A. A., Vvedenie v teoriyu kodirovaniya, Nauka, M., 1982 | MR
[6] Levinshtein V. I., “O maksimalnom chisle slov v kodakh bez perekrytii”, Problemy peredachi informatsii, 6:4 (1970), 88–90 | MR