Asymptotics of the spectrum of linear operator pencils
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 245-266

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem $Au=tBu$ is considered in a bounded Lipschitz domain, where $A$ and are sums of a pseudodifferential operator satisfying a transmission condition and a singular Green operator, with $A$ elliptic. Under natural conditions the classical formula for the asymptotics of the spectrum is established, with an estimate of the remainder determined by the character of degeneration in ellipticity of the operator $B$. Bibliography: 18 titles.
@article{SM_1985_52_1_a13,
     author = {S. Z. Levendorskii},
     title = {Asymptotics of the spectrum of linear operator pencils},
     journal = {Sbornik. Mathematics},
     pages = {245--266},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a13/}
}
TY  - JOUR
AU  - S. Z. Levendorskii
TI  - Asymptotics of the spectrum of linear operator pencils
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 245
EP  - 266
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a13/
LA  - en
ID  - SM_1985_52_1_a13
ER  - 
%0 Journal Article
%A S. Z. Levendorskii
%T Asymptotics of the spectrum of linear operator pencils
%J Sbornik. Mathematics
%D 1985
%P 245-266
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a13/
%G en
%F SM_1985_52_1_a13
S. Z. Levendorskii. Asymptotics of the spectrum of linear operator pencils. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 245-266. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a13/