Systems of Wiener--Hopf integral equations, and nonlinear factorization equations
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 181-208
Voir la notice de l'article provenant de la source Math-Net.Ru
Systems of Wiener–Hopf integral equations
\begin{equation}
f(x)=g(x)+\int_0^\infty T(x-t)f(t)\,dt
\end{equation}
and corresponding nonlinear factorization equations
\begin{align}
U(x)=T(x)+\int_0^\infty V(t)U(x+t)\,dt,
\nonumber
\\
V(x)=T(-x)+\int_0^\infty V(x+t)U(t)\,dt,\qquad x>0,
\end{align}
are studied. It is assumed that $T$ is a matrix-valued function with nonnegative components from $L_1(-\infty,\infty)$, with $\mu=r(A)\leqslant1$, where
$\displaystyle A=\int_{-\infty}^\infty T(x)\,dx$, and $r(A)$ is the spectral radius of the matrix $A$.
The conservative case $\mu=1$, to which major attention is given, falls outside the general theory of Wiener–Hopf integral equations, since the symbol of equation (1) degenerates.
A number of results have been obtained about the properties of the solution of the factorization equation (2), and about the existence, asymptotics and other properties of the solution of the homogeneous and nonhomogeneous conservative equation (1).
Bibliography: 21 titles.
@article{SM_1985_52_1_a10,
author = {N. B. Engibaryan and L. G. Arabadzhyan},
title = {Systems of {Wiener--Hopf} integral equations, and nonlinear factorization equations},
journal = {Sbornik. Mathematics},
pages = {181--208},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a10/}
}
TY - JOUR AU - N. B. Engibaryan AU - L. G. Arabadzhyan TI - Systems of Wiener--Hopf integral equations, and nonlinear factorization equations JO - Sbornik. Mathematics PY - 1985 SP - 181 EP - 208 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a10/ LA - en ID - SM_1985_52_1_a10 ER -
N. B. Engibaryan; L. G. Arabadzhyan. Systems of Wiener--Hopf integral equations, and nonlinear factorization equations. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 181-208. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a10/