Systems of Wiener--Hopf integral equations, and nonlinear factorization equations
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 181-208

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of Wiener–Hopf integral equations \begin{equation} f(x)=g(x)+\int_0^\infty T(x-t)f(t)\,dt \end{equation} and corresponding nonlinear factorization equations \begin{align} U(x)=T(x)+\int_0^\infty V(t)U(x+t)\,dt, \nonumber \\ V(x)=T(-x)+\int_0^\infty V(x+t)U(t)\,dt,\qquad x>0, \end{align} are studied. It is assumed that $T$ is a matrix-valued function with nonnegative components from $L_1(-\infty,\infty)$, with $\mu=r(A)\leqslant1$, where $\displaystyle A=\int_{-\infty}^\infty T(x)\,dx$, and $r(A)$ is the spectral radius of the matrix $A$. The conservative case $\mu=1$, to which major attention is given, falls outside the general theory of Wiener–Hopf integral equations, since the symbol of equation (1) degenerates. A number of results have been obtained about the properties of the solution of the factorization equation (2), and about the existence, asymptotics and other properties of the solution of the homogeneous and nonhomogeneous conservative equation (1). Bibliography: 21 titles.
@article{SM_1985_52_1_a10,
     author = {N. B. Engibaryan and L. G. Arabadzhyan},
     title = {Systems of {Wiener--Hopf} integral equations, and nonlinear factorization equations},
     journal = {Sbornik. Mathematics},
     pages = {181--208},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a10/}
}
TY  - JOUR
AU  - N. B. Engibaryan
AU  - L. G. Arabadzhyan
TI  - Systems of Wiener--Hopf integral equations, and nonlinear factorization equations
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 181
EP  - 208
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a10/
LA  - en
ID  - SM_1985_52_1_a10
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%A L. G. Arabadzhyan
%T Systems of Wiener--Hopf integral equations, and nonlinear factorization equations
%J Sbornik. Mathematics
%D 1985
%P 181-208
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a10/
%G en
%F SM_1985_52_1_a10
N. B. Engibaryan; L. G. Arabadzhyan. Systems of Wiener--Hopf integral equations, and nonlinear factorization equations. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 181-208. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a10/