On efficient analytic continuation of power series
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 21-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of efficiency of analytic continuation, which arose as a result of critical analysis of difficulties of Weierstrass' approach to the foundations of the theory of analytic functions, was a subject of numerous classical studies (Hadamard, Borel, LeRoy, Mittag-Leffler, Lindelöf, Pólya, et al.). The author discusses two questions related to the problem. First, by employing results of the theory of approximation by entire functions, the author succeeds in getting, roughly speaking, a converse to the well-known theorem of LeRoy and Lindelöf on analytic continuation of power series into angular domains, with further generalization and refinement of it. Second, the author discusses the question of efficiency of summation methods as applied to power series outside their circle of convergence. It is proved that the classical Mittag-Leffler–Lindelöf conditions of generalized star-likeness on the domain of summability are actually necessary. Bibliography: 19 titles.
@article{SM_1985_52_1_a1,
     author = {N. U. Arakelian},
     title = {On efficient analytic continuation of power series},
     journal = {Sbornik. Mathematics},
     pages = {21--39},
     year = {1985},
     volume = {52},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a1/}
}
TY  - JOUR
AU  - N. U. Arakelian
TI  - On efficient analytic continuation of power series
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 21
EP  - 39
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a1/
LA  - en
ID  - SM_1985_52_1_a1
ER  - 
%0 Journal Article
%A N. U. Arakelian
%T On efficient analytic continuation of power series
%J Sbornik. Mathematics
%D 1985
%P 21-39
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a1/
%G en
%F SM_1985_52_1_a1
N. U. Arakelian. On efficient analytic continuation of power series. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 21-39. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a1/

[1] Hadamard J., La série de Taylor et son prolongement analytique, Scientia, 1901

[2] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR

[3] Hadamard J., “Essai sur l'étude des fonctions données par leur development de Taylor”, J. Math., 4(8) (1892), 101–186 | Zbl

[4] Le Roy E., “Sur les Séries divergentes et les fonctions définies par un devélopment de Taylor”, Ann. de la Faculté des Sciences de Toulouse 2$^{\text{{\rm e}}}$ ser., II (1900), 317–430

[5] Lindelöf E., Le calcul des residus et ses applications a'la theorie des fonctions, Paris, 1905

[6] Carleman T., “Sur un theoreme de Weierstrass”, Arkiv Math., Astron. Fisik B, 20:4 (1927), 1–5

[7] Keldysh M. V., “O priblizhenii golomorfnykh funktsii tselymi funktsiyami”, DAN SSSR, 47:4 (1945), 243–245

[8] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 | MR | Zbl

[9] Arakelian N. U., “Approximation complexe et propriétés des fonctions analytiques”, Actes, Congrés intern. Math., 2, 1970, 595–600 | MR

[10] Gonchar A. A., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 118 (160) (1982), 535–556 | MR | Zbl

[11] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951

[12] Kuk R., Beskonechnye matritsy i prostranstva posledovatelnostei, Fizmatgiz, M., 1960 | MR

[13] Lindelöf E., “Sur l'application de la theorie des residues au prolongement analytique des series de Taylor”, J. de Math. Ser. 5, 9 (1903), 213–221 | Zbl

[14] Dienes P., The Taylor Series, Oxford, 1931 | Zbl

[15] Phragmen F. et Lindelöf E., “Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogénes dans le voisinage d'un point singulier”, Acta Math., 31 (1908), 381–406 | DOI | MR | Zbl

[16] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[17] Titmarsh E., Teoriya funktsii, Nauka, M., 1980

[18] Levinson N., Gap and density theorems, Amer. Math. Soc., New York, 1940 | MR | Zbl

[19] Leng S., Algebra, Mir, M., 1968