On two methods of studying the invertibility of operators in $C^*$-algebras induced by dynamical systems
Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 1-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Operators of the form $$ bu(x)=\sum a_k(x)u(\alpha_k^{-1}(x)) $$ are studied in $L_2(X,\mu)$, where the $a_k$ are given functions and the $\alpha_k\colon X\to X$ are given bijective mappings. A class of $C^*$-algebras including the algebras generated by these operators is also considered. It is proved that these algebras are isomorphic; as a consequence, the spectrum is invariant under rotations and independent of the space the operators act in, and the set of Fredholm operators in the above class coincides with the set of invertible operators. Two methods of studying the invertibility of operators belonging to the above-mentioned algebras are described. The first method relies on establishing the relation between the invertibility of an operator $b$ and the hyperbolicity of the associated linear extension $\beta$. The second method is based on constructing, from the operator $b$, a family of operators $\pi_x(b)$ in the algebra generated by the classical weighted shift operators in $l_2$, such that $b$ is invertible if and only if all the $\pi_x(b)$ are invertible. Bibliography: 47 titles.
@article{SM_1985_52_1_a0,
     author = {A. B. Antonevich},
     title = {On two methods of studying the invertibility of operators in $C^*$-algebras induced by dynamical systems},
     journal = {Sbornik. Mathematics},
     pages = {1--20},
     year = {1985},
     volume = {52},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1985_52_1_a0/}
}
TY  - JOUR
AU  - A. B. Antonevich
TI  - On two methods of studying the invertibility of operators in $C^*$-algebras induced by dynamical systems
JO  - Sbornik. Mathematics
PY  - 1985
SP  - 1
EP  - 20
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1985_52_1_a0/
LA  - en
ID  - SM_1985_52_1_a0
ER  - 
%0 Journal Article
%A A. B. Antonevich
%T On two methods of studying the invertibility of operators in $C^*$-algebras induced by dynamical systems
%J Sbornik. Mathematics
%D 1985
%P 1-20
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1985_52_1_a0/
%G en
%F SM_1985_52_1_a0
A. B. Antonevich. On two methods of studying the invertibility of operators in $C^*$-algebras induced by dynamical systems. Sbornik. Mathematics, Tome 52 (1985) no. 1, pp. 1-20. http://geodesic.mathdoc.fr/item/SM_1985_52_1_a0/

[1] Khalmosh P. R., “Desyat problem teorii gilbertovykh prostranstv”, Matematika, 15:4 (1971), 28–67 | Zbl

[2] Nikolskii N. K., “Invariantnye podprostranstva v teorii operatorov i teorii funktsii”, Itogi nauki i tekhniki. Matematicheskii analiz, 12, VINITI, M., 1974, 199–412

[3] Litvinchuk G. S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977, s. 448 | MR | Zbl

[4] Borisovich Yu. G., Zvyagin V. S, Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl

[5] Azbelev N. V., Rakhmatullina L. V., “Funktsionalno-differentsialnye uravneniya”, Diff. uravneniya, 14:5 (1978), 771–797 | MR | Zbl

[6] Antonevich A. B., “Algebry, porozhdennye operatorami vzveshennogo sdviga i psevdodifferentsialnye operatory so sdvigom”, DAN SSSR, 256:6 (1981), 1293–1296 | MR | Zbl

[7] Antonevich A. B., “Ob operatorakh tipa svertki s ostsilliruyuschimi koeffitsientami”, Izv. AN BSSR. Seriya fiz.-matem. nauk, 1976, no. 2, 42–46 | Zbl

[8] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR | Zbl

[9] Atya M., Lektsii po $K$-teorii, Mir, M., 1967 | MR

[10] Vasilev N. B., “$C^*$-algebry s konechnomernymi neprivodimymi predstavleniyami”, UMN, 21:1 (1966), 135–154 | MR | Zbl

[11] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl

[12] Murray F. J., von Neuman J., “On ring of operators, I”, Ann. Math., 36 (1936), 116–229 | DOI

[13] Zeller–Meier G., “Produits croises d'une $C^*$-algehre par une groupe d'automorphismes”, J. Math. Pures et appl., 47:2, 101–239 | MR

[14] Arveson W. B., Josephson K.-B., “Operator algebras and measure preserving automorphisms, II”, J. Funct. analysis, 4:1 (1969), 100–334 | DOI | MR

[15] Golodets V. Ya., “Skreschennye proizvedeniya neimanovskikh algebr”, UMN, 26:5 (1971), 3–50 | MR | Zbl

[16] Kissin E. V., “$C^*$-algebry, porozhdennye dinamicheskimi sistemami i vzveshennymi sdvigami”, DAN SSSR, 219:5 (1974), 1061–1064 | MR | Zbl

[17] O'Donovan D. P., “Weighted shifts and covariance algebras”, Trans. Amer. Math. Soc., 208 (1975), 1–25 | DOI | MR | Zbl

[18] Antonevich A. V., Lebedev A. V., “O rasshirenii operatornykh algebr s pomoschyu unitarnykh operatorov, porozhdayuschikh avtomorfizmy”, DAN BSSR, 24:5 (1980), 404–407 | MR

[19] Antonevich A. B., Brenner V. V., “O simvole psevdodifferentsialnogo operatora s lokalno nezavisimymi sdvigami”, DAN BSSR, 24:10 (1980), 884–887 | MR | Zbl

[20] Lebedev A. V., “Ob obratimosti elementov v $C^*$-algebrakh, porozhdennykh dinamicheskimi sistemami”, UMN, 34:4 (1979), 199–200 | MR | Zbl

[21] Antonevich A. B., Lebedev A. V., “O spektralnykh svoistvakh operatorov so sdvigom”, Izv. AN SSSR. Seriya matem., 47:5 (1983), 915–941 | MR | Zbl

[22] Kitover A. K., “O spektre avtomorfizmov s vesom i teoreme Kamovitsa–Shainberga”, Funkts. analiz, 13:1 (1979), 70–71 | MR | Zbl

[23] Grigorchuk R. I., “K probleme Milnora o gruppovom roste”, DAN SSSR, 271:1 (1983), 30–33 | MR | Zbl

[24] Shubin M. A., “Teoremy o sovpadenii spektrov psevdodifferentsialnogo pochti periodicheskogo operatora v $L^2(\mathbf{R}^n)$ i $B^2(\mathbf{R}^n)$”, Sib. matem. zh., 17:1 (1976), 200–215 | MR | Zbl

[25] Biktashev R. A., Mischenko A. S, “O spektrakh ellipticheskikh neogranichennykh psevdodifferentsialnykh operatorov nad $C^*$-algebrami”, Vesti. MGU. Seriya matem., 1980, no. 3, 56–58 | MR | Zbl

[26] Kozlov S. M., Shubin M. A., “Teorema o sovpadenii spektrov dlya sluchainykh ellipticheskikh operatorov”, Funkts. analiz, 16:4 (1982), 74–75 | MR | Zbl

[27] Biktashev R. A., “Spektry psevdodifferentsialnykh operatorov nad $C^*$-algebrami”, Vestn. MGU. Seriya matem., 1982, no. 4, 36–38 | MR | Zbl

[28] Mischenko A. S, Sharipov F., “Nezavisimost spektra ellipticheskogo operatora so sluchainymi koeffitsientami”, Vestn. MGU. Seriya matem., 1983, no. 6, 51–56 | Zbl

[29] Rise F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979

[30] Radbel N. I., “Rasscheplenie spektra i normalnye tochki lineinogo puchka operatorov v $B$-prostranstvakh”, Vestn. KhGU, seriya mekh.-matem., 1974, no. 39, 17–20 | MR | Zbl

[31] Ditkin V. V., “O nekotorykh spektralnykh svoistvakh puchka lineinykh ogranichennykh operatorov”, Matem. zametki, 31:1 (1982), 75–79 | MR | Zbl

[32] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Trudy MIAN, 90, 1967 | MR

[33] Mather J., “Characterization of Anosov diffeomorphisms”, Indag Math., 30 (1968), 479–483 | MR

[34] Sacker R. J., Sell G. R., “Existence of dichotomies and invariant splittings for linear differential systems”, J. Differential equations, 15:3 (1974), 429–458 ; 22:2 (1976), 478–496 ; 22:2 (1976), 497–522 ; 27:1 (1978), 106–137 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[35] Bronshtein I. U., Chernii V. F., “Lineinye rasshireniya, udovletvoryayuschie usloviyu eksponentsialnoi dikhotomii”, Izv. AN MSSR. Seriya fiz.-tekhn. i matem. nauk, 1976, no. 3, 12–16

[36] Lyubarskii M. G., “O dikhotomii lineinykh rasshirenii dinamicheskikh sistem”, Teoriya funktsii, funkts. analiz i ikh prilozh., Resp. mezhved. nauchnyi sbornik, 33, Kharkov, 1980, 76–85 | MR

[37] Arraut J. L., Santos N. M., “The point spectrum of the adjoint to an automorphism of a vector bundle”, Lec. Notes Math., 468 (1975), 20–21 | DOI | Zbl

[38] Antonevich A. B., “Indeks i drugie topologicheskie invarianty operatora so sdvigom, porozhdennym giperbolicheskim diffeomorfizmom okruzhnosti”, VII Vsesoyuznaya topologich. konf. (Tezisy dokladov i soobschenii), IM AN BSSR, MIAN SSSR, Minsk, 1977, 6

[39] Antonevich A. B., “Ob operatorakh, porozhdennykh lineinymi rasshireniyami diffeomorfizmov”, DAN SSSR, 243:4 (1978), 825–828 | MR | Zbl

[40] Karlovich Yu. I., Kravchenko V. G., “O sistemakh funktsionalnykh i integro-funktsionalnykh uravnenii s nekarlemanovskim sdvigom”, DAN SSSR, 236:5 (1977), 1064–1067 | MR | Zbl

[41] Karlovich Yu. I., Kravchenko V. G., “Sistemy singulyarnykh integralnykh uravnenii so sdvigom”, Matem. sbornik, 116 (158) (1981), 87–110 | MR

[42] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[43] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR

[44] Lebedev A. V., “Obratimost elementov v algebrakh operatorov so sdvigom, I”, Izv. AN BSSR. Seriya fiz.-matem. nauk, 1982, no. 6, 36–41

[45] Myasnikov A. G., Sazonov L. I., “O singulyarnykh integralnykh operatorakh s nekarlemanovskim sdvigom”, DAN SSSR, 237:6 (1977), 1289–1292

[46] Karlovich Yu. I., Kravchenko V. G., “Ob odnoi algebre singulyarnykh integralnykh operatorov s nekarlemanovskim sdvigom”, DAN SSSR, 239:1 (1978), 38–41 | MR | Zbl

[47] Soldatov L. Ya., “K teorii singulyarnykh operatorov so sdvigom”, Diff. uravneniya, 15:1 (1979), 116–131 | MR | Zbl